Mathematics Standards

Adopted June 2022

Catholic Standards and Benchmarks

"In the Catholic school's educational project there is no separation between time for learning and time for formation, between acquiring notions and growing in wisdom. The various school subjects do not present only knowledge to be attained, but also values to be acquired and truths to be discovered." <u>The Identity of the Catholic School for a Culture of Dialogue</u> (2022).

Cardinal Newman Principals of Catholic Identity in Education

- 1. Inspired by Divine Mission
- 2. Models Christian Communion and Identity
- 3. Encounters Christ in Prayer, Scripture, and Sacrament
- 4. Integrally Forms the Human Person
- 5. Imparts a Christian View for Humanity

Catholic Curricular Standards and Dispositions in Mathematics

Catholic Curricular Standards and Dispositions are broadly grouped into general, intellectual, and dispositional standards focusing on grades K-6 and 7-12. The general standards are tied to the five critical elements listed above. Intellectual standards are cognitive standards and are primarily content and performance based. The dispositional standards involve the formation of character, beliefs, attitudes, values, interpersonal skills. Each standard is given a unique identifier for ease of location within the document and identification in teacher lesson plans.

Grades K-6

General Standards

- GS1 Demonstrate the mental habits of precise, determined, careful, and accurate questioning, inquiry, and reasoning.
- GS2 Develop lines of inquiry (as developmentally appropriate) to understand why things are true and why they are false.
- GS3 Recognize the power of the human mind as both a gift from God and a reflection of Him in whose image and likeness we are made.
- GS4 Survey the truths about mathematical objects that are interesting in their own right and independent of human opinions.

Dispositional Standards

- DS1 Display a sense of wonder about mathematical relationships as well as confidence in mathematical certitude.
- DS2 Respond to the beauty, harmony, proportion, radiance, and wholeness present in mathematics.
- DS3 Show interest in the pursuit of understanding for its own sake.
- DS4 Exhibit joy at solving difficult mathematical problems and operations.
- DS5 Show interest in how the mental processes evident within the discipline of mathematics (such as order, perseverance, and logical reasoning) help us with the development of the natural virtues (such as self-discipline and fortitude).

Grades 7-12

General Standards

- GS1 Demonstrate the mental habits of precise, determined, careful, and accurate questioning, inquiry, and reasoning in the pursuit of transcendent truths.
- GS2 Develop lines of inquiry to understand why things are true and why they are false.
- GS3 Have faith in the glory and dignity of human reason as both a gift from God and a reflection of Him in whose image and likeness we are made.
- GS4 Explain how mathematics in its reflection of the good, true, and beautiful reveals qualities of being and the presence of God.

Intellectual Standards

- IS1 Explain the nature of rational discourse and argument and the desirability of precision and deductive certainty which mathematics makes possible and is not possible to the same degree in other disciplines.
- IS2 Demonstrate how sound logical arguments and other processes of mathematics are foundational to its discipline.
- IS3 Recognize how mathematical arguments and processes can be extrapolated to other areas of study, including theology and philosophy.
- IS4 Explain how it is possible to mentally abstract and construct mathematical objects from direct observations of reality and how one's perception of that reality is important to what one is doing (see Appendix F).
- IS5 Recognize personal bias in inquiry and articulate why inquiry should be undertaken in a fair and independent manner.
- IS6 Evaluate the ongoing nature of mathematical inquiry, its inexhaustibility, and its openness to the infinite.
- IS7 Explain man's limitations of understanding and uncovering all mathematical knowledge.
- IS8 Explain how fundamental questions of values, common sense, and religious and human truths and experiences are beyond the scope of mathematical inquiry and its syllogisms.

Dispositional Standards

- DS1 Display a sense of wonder about mathematical relationships, especially mathematical certitude which is independent of human opinion.
- DS2 Share with others the beauty, harmony, proportion, radiance, and wholeness present in mathematics.
- DS3 Advocate for the pursuit of understanding for its own sake and the intrinsic value or discovery of the true and the beautiful often at the requirement of great sacrifice, discipline, and effort.
- DS4 Exhibit appreciation for the ongoing nature of mathematical inquiry.
- DS5 Exhibit habits of thinking quantitatively and in an orderly manner, especially through immersion in mathematical observations found within creation.
- DS6 Propose how mathematical objects or proofs (such as the golden mean, the

Fibonacci numbers, the musical scale, and geometric proofs) suggest divine origin.

- DS7 Exhibit appreciation for the process of discovering meanings and truths existing within the solution of the problem and not just arriving at an answer.
- DS8 Exhibit humility at knowing that as a human being man can only grasp a portion of the truths of the universe.
- DS9 Advance an understanding of the ability of the human intellect to know and the desire of the will to want to know more.

Overview

The Diocesan Course of Study in Mathematics contains the minimal content standards for each course and is intended to define essential content for each level. Each course builds upon the previous making it imperative to understand the content for each and recognize it as required content. Attending to the depth of knowledge required to apply the skill in each standard will improve students' overall success as they progress. Additional standards can be added to meet the needs of the children served at individual locations provided that required standards are mastered.

Organization

The standards are aligned with NAEP Content Areas and further broken down by grade bands:

- Number Properties and Operations
 - Foundations of Counting (K)
 - Operations with Numbers: Base 10 (K-5)
 - Operations with Fractions (3-5)
 - Proportional Reasoning (6-8)
 - Number Systems and Operations (6-8)
 - o Number (HS)
- Algebra
 - Operations and Algebraic Thinking (K-5)
 - Algebra and Functions (6-HS)
- Data Analysis, Statistics, and Probability
 - Data Analysis (K-5)
 - o Data Analysis, Statistics, and Probability
- Measurement
- Geometry

New Standards

Standards new to each course as well as changes within existing standards are indicated in red. Standards specific to the diocesan course of study are indicated by (DOB) at the end of the standard. The kindergarten course of study includes four standards in red with a prefix EXT. These are extension standards that are in later courses as they have been in the past. These are not required at the kindergarten level but can be taught if all other standards are mastered.

Content Standards

- 1. Number properties and operations
- 2. Algebra
- 3. Data analysis, statistics, and probability
- 4. Measurement
- 5. Geometry

Mathematical Practices

- 1. Make sense of problems and persevere in solving them.
- 2. Reason abstractly and quantitatively.
- 3. Construct viable arguments and critique the reasoning of others.
- 4. Model with mathematics.
- 5. Use appropriate tools strategically.
- 6. Attend to precision.
- 7. Look for and make use of structure.
- 8. Look for and express regularity in repeated reasoning.

Committee Members

The Catholic Schools Office would like to thank the following math teachers who participated in the Mathematics Standards revision process.

Deborah Arnold Monica Baker Rachel Barranco **Taylor Bradshaw** Kim Bryant Leah Caraway **Colleen Caruso** Lori Cobb **Heather Collins** Greta Davis Lynda Fulks Lee Ann Fuller Julie Godwin Gina Hagelskamp Kati Horton **Tammy Humphries** Milia Jones Kevin King Sandy Mallicoat LuAnn Mansfield Kelly Matson **Hugh McWhorter** April Miller Laura Reid Mary Helen Sciro Laura Smith Lorrie Steele Laura Stout Jennie Walker Michelle Wall **Therese Wesley** Renee Williams Wade White Jennifer Yobs Katie Zielinski

Kindergarten

Standard	Cardinal Newman	Date
		Taught
Number Properties and (Operations	
Foundations of Coun	ting	
Know number names and the co	ount sequence.	
1. Count forward orally from 0 to 100 by ones, fives and tens. Count backward	GS3 Recognize the power of the human	
orally from 10 to 0 by ones.	mind as both a gift from God and a	
2. Count to 100 by ones beginning with any given number between 0 and 99.	reflection of Him in whose image and	
3. Write numbers from 0 to 20. Represent a number of objects with a written	likeness we are made.	
numeral 0-20 (with 0 representing a count of no objects).		
Count to tell the number of objects.		
4. Connect counting to cardinality using a variety of concrete objects.	GS1 Demonstrate the mental habits of	
a. Say the number names in consecutive order when counting objects. Pair	precise, determined, careful, and	
each object with one and only one number name and each number name	accurate questioning, inquiry, and	
with one and only one object.	reasoning.	
b. Indicate that the last number said tells the number of objects counted in		
set.		
c. Indicate that the number of objects in a set is the same regardless of thei		
arrangement or the order in which they were counted.		
d. Explain that each successive number name refers to a quantity that is one		
larger.		
5. Count to answer "how many" questions.		
a. Count using no more than 20 concrete objects arranged in a line, a		
rectangular array, or a circle.		
b. Count using no more than 10 concrete objects in a scattered configuratio	ו.	
c. Draw the number of objects that matches a given numeral from 0 to 20.		

Compare numbers.		
6. Identify whether the number of objects in one group is greater/more than,	DS2 Respond to the beauty, harmony,	
less/fewer than, or equal to the number of objects in another group, e.g., by using	proportion, radiance, and wholeness	
7. Compare two numbers between 0 and 10 presented as written numerals by	present in mathematics.	
identifying which is greater less or if they are equal		
Operations with Number	I Irs	
Work with numbers 11- 19 to gain foundation	tions for place value.	
8. Compose and decompose numbers from 11 to 19 by using concrete objects or	DS1 Display a sense of wonder about	
drawings to demonstrate that these numbers are composed of ten ones and one,	mathematical relationships as well as	
two, three, four, five, six, seven, eight, or nine ones.	confidence in mathematical certitude.	
Algebra: Operations and Algebra	raic Thinking	
Understand addition as putting together and adding to, and understa	nd subtraction as taking apart and taking fro	om.
9. Represent addition and subtraction up to 10 with concrete objects, fingers,	DS3 Show interest in the pursuit of	
pennies, mental images, drawings, claps or other sounds, acting out situations,	understanding for its own sake.	
10. Solve addition and subtraction word problems, and add and subtract within 10.	DS4 Exhibit iou at solving difficult	
by using concrete objects or drawings to represent the problem	mathematical problems and operations	
11. Decompose numbers less than or equal to 10 into pairs of smaller numbers in	CS2 Develop lines of inquiry (as	
more than one way, by using concrete objects or drawings, and record each	GS2 Develop lines of inquiry (as	
decomposition by a drawing or equation	developmentally appropriate) to	
Example: $5 = 2 + 3$ and $5 = 4 + 1$	they are false	
12 For any such as from 0 to 10 find the number that realize 10 where added to	they are faise.	
12. For any number from 0 to 10, find the number that makes 10 when added to	DS5 Show interest in how the mental	
with a drawing or equation	processes evident within the discipline of	
13. Eluently add and subtract within 6	mathematics (such as order,	
14. Duplicate and extend simple patterns using concrete chiests	perseverance, and logical reasoning) help	
14. Duplicate and extern simple patterns using concrete objects.	us with the development of the natural	
	virtues (such as self-discipline and	
	fortitude).	

Data Analysis, Statistics, and Probability	
Collect and analyze data and inter	rpret results.
 15. Classify objects into given categories of 10 or fewer; count the number of objects in each category and sort the categories by count. a. Categorize data on Venn diagrams, pictographs, and "yes-no" charts using real objects, symbolic representations, or pictorial representations. 	DS5 Show interest in how the mental processes evident within the discipline of mathematics (such as order, perseverance, and logical reasoning) help us with the development of the natural virtues (such as self-discipline and fortitude).
Measurement	
Describe and compare measurabl	e attributes.
 16. Identify and describe measurable attributes (length, weight, height) of a single object using vocabulary such as long/short, heavy/light, or tall/short. 17. Directly compare two objects with a measurable attribute in common to see which object has "more of" or "less of" the attribute and describe the difference. <i>Example: Directly compare the heights of two children and describe one child as "taller" or "shorter."</i> 	GS4 Survey the truths about mathematical objects that are interesting in their own right and independent of human opinions.
EXT: Identify pennies, nickels, dimes, quarters. (Remains a 1 st grade skill but can be introduced in K if time permits)	
EXT: Identify time to the hour using analog and digital clocks. (Remains a 1 st grade skill but can be introduced in K if time permits)	
Geometry	
Identify and describe shapes (squares, circles, triangles, rectangles, h	exagons, cubes, cones, cylinders, and spheres).
 18. Describe objects in the environment using names of shapes, and describe the relative positions of these objects using terms such as above, below, beside, in front of, behind, and next to. 19. Correctly name shapes regardless of their orientations or overall sizes. 	GS4 Survey the truths about mathematical objects that are interesting in their own right and independent of human opinions
20. Identify shapes as two-dimensional (lying in a plane, "flat") or three-	
dimensional ("solid").	DS2 Respond to the beauty, harmony, proportion, radiance, and wholeness present in mathematics.

Analyze, compare, create, and compose shapes.		
21. Analyze and compare two- and three-dimensional shapes, in different sizes and orientations, using informal language to describe their similarities, differences, parts (number of sides and vertices or "corners"), and other attributes. <i>Example: having sides of equal length</i>	DS1 Display a sense of wonder about mathematical relationships as well as confidence in mathematical certitude.	
22. Model shapes in the world by building shapes from components and drawing shapes.		
23. Use simple shapes to compose larger shapes. Example: Join two triangles with full sides touching to make a rectangle.		
EXT: Identify a line of symmetry (Lines of symmetry remains a 1 st grade skill)		
EXT: Identify parts of a whole; i.e. 1/2, 1/3 and ¼ (partitioning into parts remains a 1 st grade skill)		

First Grade

Standard	Cardinal Newman	Date
		Taught
Number Properties and Operation	ons (NAEP)	
Foundations of Counting		
1. Skip count by 2's to 100 (DOB)		
2. Identify position using ordinal number through 10 th (DOB)	GS3 Recognize the power of the human	
 3. Use concrete objects to determine whether a group of up to 20 objects is even or odd. (DOB) a. Write an equation to express an even number as a sum of two equal addends. 	mind as both a gift from God and a reflection of Him in whose image and likeness we are made.	
4. Estimate whether a group of objects is more or less than 10 or 100. (DOB)		
Operations with Numbers: Base 10		
Understand simple pattern	IS.	
5. Reproduce, extend, and create patterns and sequences of numbers using a variety of materials.	GS2 Develop lines of inquiry (as developmentally appropriate) to understand why things are true and why they are false.	
Extend the counting sequen	ce.	
 6. Extend the number sequence from 0 to 120. a. Count forward and backward by ones, starting at any number less than 120. b. Read numerals from 0 to 120. c. Write numerals from 0 to 120 d. Represent a number of objects from 0 to 120 with a written numeral. 	GS2 Develop lines of inquiry (as developmentally appropriate) to understand why things are true and why they are false.	
Understand place value.		

7. Explain that the two digits of a two-digit number represent amounts of tens and		
ones.		
a. Identify a bundle of ten ones as a "ten."	GS2 Develop lines of inquiry (as	
b. Identify the numbers from 11 to 19 as composed of a ten and one, two,	dovelopmentally appropriate) to	
three, four, five, six, seven, eight, or nine ones	developmentally appropriate) to	
c. Identify the numbers 10, 20, 30, 40, 50, 60, 70, 80, 90 as one, two, three,	understand why things are true and why	
four, five, six, seven, eight, or nine tens (and 0 ones).	they are false.	
8. Compare pairs of two-digit numbers based on the values of the tens and ones		
digits, recording the results of comparisons with the symbols >, =, and < and orally		
with the words "is greater than," "is equal to," and "is less than."		
Use place value understanding and properties of ope	rations to add and subtract.	
9. Add within 100, using concrete models or drawings and strategies based on place		
value.		
a. Add a two-digit number and a one-digit number.		
b. Add a two-digit number and a multiple of 10.	DS5 Show interest in how the mental	
c. Demonstrate that in adding two-digit numbers, tens are added to tens, ones	processes evident within the discipline of	
are added to ones, and sometimes it is necessary to compose a ten.	processes evident within the discipline of	
d. Relate the strategy for adding a two-digit number and a one-digit number to		
a written method and explain the reasoning used.	perseverance, and logical reasoning) help	
10. Given a two-digit number, mentally find 10 more or 10 less than the number	us with the development of the natural	
without having to count, and explain the reasoning used.	virtues (such as self-discipline and	
11. Subtract multiples of 10 from multiples of 10 in the range 10-90 (positive or zero	fortitude).	
differences), using concrete models or drawings and strategies based on place value,		
properties of operations, and/or the relationship between addition and subtraction.		
Relate the strategy to a written method and explain the reasoning used.		
Algebra: Operations and Algebraic	: Thinking	
Represent and solve problems involving addit	ion and subtraction.	
12. Use addition and subtraction to solve word problems within 20 by using concrete	G2 Develop lines of inquiry (as	
objects, drawings, and equations with a symbol for the unknown number to	developmentally appropriate) to	
represent the problem.	uevelopmentally appropriate) to	
a. Find missing addend using "add to" to solve word problems within 20.	understand why things are true and why	
b. Find value using "take from" to solve word problems within 20.	they are false.	

c. Put together/take apart with addend unknown to solve word problems		
within 20.	DS4 Exhibit joy at solving difficult	
d. Compare quantities, with difference unknown, bigger unknown, and smaller unknown while solving word problems within 20.	mathematical problems and operations.	
13. Solve word problems that call for addition of three whole numbers whose sum is		
less than or equal to 20 by using concrete objects, drawings, or equations with a		
symbol for the unknown number to represent the problem.		
Understand and apply properties of operations and the relation	ship between addition and subtraction	
14. Apply properties of operations as strategies to add and subtract (students need		
not use formal terms for these properties).	G2 Develop lines of inquiry (as	
Examples: If 8 + 3 = 11 is known, then 3 + 8 = 11 is also known (commutative	developmentally appropriate) to	
property of addition). To add 2 + 6 + 4, the second and third numbers can be	understand why things are true and why	
added to make a ten, so 2 + 6 + 4 = 2 + 10 = 12 (associative property of	understand why things are true and why	
addition). When adding 0 to a number, the result is the same number (identity	they are faise.	
property of zero for addition)		
15. Explain subtraction as an unknown-addend problem.	DS4 Exhibit joy at solving difficult	
Example: subtracting 10 - 8 by finding the number that makes 10 when added	mathematical problems and operations.	
to 8		
Add and subtract within 20).	·
Note: Fluency involves a mixture of "just knowing" answers, knowing answers	from patterns, and knowing answers from th	he use of
strategies. The word fluently is used in the standards to mean	n accurately, efficiently, and flexibly	
16. Relate counting to addition and subtraction.		
Example: counting on 2 to add 2.	G2 Develop lines of inquiry (as	
17. Add and subtract within 20.	developmentally appropriate) to	
a. Demonstrate fluency with addition and subtraction facts with sums or	understand why things are true and why	
differences to 10 by counting on.	they are false.	
b. Demonstrate fluency with addition and subtraction facts with sums or		
differences to 10 by making ten.	DS4 Exhibit joy at solving difficult	
c. Demonstrate fluency with addition and subtraction facts with sums or	mathematical problems and operations.	
differences to 10 by decomposing a number leading to a ten	· · · · · · · · · · · · · · · ·	

d. e.	Demonstrate fluency with addition and subtraction facts with sums or differences to 10 by using the relationship between addition and subtraction. Demonstrate fluency with addition and subtraction facts with sums or differences to 10 by creating equivalent but easier or known sums.		
	Work with addition and subtraction	equations.	
18. Exp	plain that the equal sign means "the same as." Determine whether equations	G2 Develop lines of inquiry (as	
involvi	ng addition and subtraction are true or false.	developmentally appropriate) to	
19. Sol	ve for the unknown whole number in various positions in an addition or	understand why things are true and why	
subtra	ction equation, relating three whole numbers that would make it true. (Fact	they are false.	
Tamile	5)		
		DS4 Exhibit joy at solving difficult	
		mathematical problems and operations.	
	Data Analysis, Statistics, and Pi	robability	
	Collect and analyze data and interp	ret results.	
20. Or	ganize, represent, and interpret data with up to three categories	GS1 Demonstrate the mental habits of	
a.	Ask and answer questions about the total number of data points in	precise, determined, careful, and	
	organized data.	accurate questioning, inquiry, and	
b.	Summarize data on Venn diagrams, pictographs, and "yes-no" charts	reasoning.	
	using real objects, symbolic representations, or pictorial		
	representations.	DS3 Show interest in the pursuit of	
C.	Determine "how many" in each category using up to three categories	understanding for its own sake.	
	of data.		
d.	Determine "how many more" or "how many less" are in one category		
	than in another using data organized into two or three categories.		

Measurement		
Describe and compare measurable	attributes.	
21. Order three objects by length; compare the lengths of two objects indirectly by	GS4 Survey the truths about	
using a third object. Compare using standard and nonstandard units.	mathematical objects that are interesting	
22. Determine the length of an object using non-standard units with no gaps or	in their own right and independent of	
overlaps, expressing the length of the object with a whole number.	human opinions.	
Work with time and mone	Ϋ́Υ	
23. Tell and write time to the hours and half hours using analog and digital clocks.	DS1 Display a sense of wonder about	
24. Identify pennies, nickels, dimes and quarters by name and value.	mathematical relationships as well as	
	confidence in mathematical certitude.	
Geometry		
Reason with shapes and their att	ributes.	
Note: Students do not need to learn formal names such	n as "right rectangular prism."	
25. Build and draw shapes which have defining attributes.		
a. Distinguish between defining attributes (triangles are 3-sided, closed		
figures) and non-defining attributes (color, size, orientation)		
26. Compose two-dimensional shapes (rectangles, squares, trapezoids,		
triangles, half-circles, and quarter-circles) or three-dimensional shapes	GS4 Survey the truths about	
(cubes, right rectangular prisms, right circular cones, and right circular	mathematical objects that are interesting	
cylinders) to create a composite shape and compose new shapes from the	in their own right and independent of	
composite shape. (Students do not need to learn formal names such as "right	human opinions.	
rectangular prism.")		
27. Partition circles and rectangles into two and four equal shares and	DS2 Respond to the beauty, harmony,	
describe the shares using the words halves, fourths, and quarters, and use	proportion, radiance, and wholeness	
the phrases half of, fourth of, and quarter of	present in mathematics.	
a. Identify the number of shares needed to make a whole.		
b. Explain that decomposing into more equal shares creates smaller		
shares of circles and rectangles.		
28. Identify real-life examples of line symmetry (DOB)]	

Second Grade

Standard	Cardinal Newman	Date
		Taught
Number Properties and Ope	rations	
Operations with Numbers: Bas	se 10	
Understand place value.		
1. Explain that the three digits of a three-digit number represent amounts of hundreds, tens, and ones.	GS2 Develop lines of inquiry (as developmentally appropriate) to	
 a. Explain that 100 can be thought of as a bundle of ten tens, caned a "hundred". b. Explain that the numbers 100, 200, 300, 400, 500, 600, 700, 800, 900 	they are false.	
refer to one, two, three, four, five, six, seven, eight, or nine hundreds (and 0 tens and 0 ones).	GS3 Recognize the power of the human mind as both a gift from God and a	
2. Count within 1000 by ones, fives, tens, and hundreds.	reflection of Him in whose image and	
3. Read and write numbers to 1000 using base-ten numerals, number names, and expanded form.	likeness we are made.	
4. Compare two three-digit numbers based on the value of the hundreds, tens, and ones digits, recording the results of comparisons with the symbols >, =, and < and orally with the words "is greater than," "is equal to," and "is less than."	DS5 Show interest in how the mental processes evident within the discipline of mathematics (such as order, perseverance, and logical reasoning) help us with the development of the natural virtues (such as self-discipline and fortitude).	
Use place value understanding and properties of ope	rations to add and subtract.	
5. Fluently add and subtract within 100, using strategies based on place value, properties of operations, and/or the relationship between addition and subtraction.	GS2 Develop lines of inquiry (as developmentally appropriate) to	

6. Use a variety of strategies to add up to four two-digit numbers.	understand why things are true and why	
7. Add and subtract within 1000 using concrete models or drawings and	they are false.	
strategies based on place value, properties of operations, and/or the		
relationship between addition and subtraction; relate the strategy to a	GS3 Recognize the power of the human	
written method.	mind as both a gift from God and a	
a. Explain that in adding or subtracting three-digit numbers, one adds or	reflection of Him in whose image and	
subtracts hundreds and hundreds, tens and tens, ones and ones; and	likeness we are made.	
sometimes it is necessary to compose or decompose tens or		
hundreds.	DS5 Show interest in how the mental	
8. Mentally add and subtract 10 or 100 to a given number between 100 and	processes evident within the discipline	
900.	of mathematics (such as order,	
9. Explain why addition and subtraction strategies work, using place value and	perseverance, and logical reasoning)	
the properties of operations.	help us with the development of the	
Note: Explanations may be supported by drawings or objects.	natural virtues (such as self-discipline	
	and fortitude).	
Algebra: Operations and Algebra	ic Thinking	
Represent and solve problems involving addit	ion and subtraction.	
Note: Second grade problem types include adding to, taking from, putting tog	ether, taking apart, and comparing with unk	nowns in
all positions.		
10. Use addition and subtraction within 100 to solve one- and two-step word	G2 Develop lines of inquiry (as	
problems by using drawings and equations with a symbol for the unknown	developmentally appropriate) to	
number to represent the problem.	understand why things are true and why	
	they are false.	
	DS4 Exhibit joy at solving difficult	
	mathematical problems and operations.	

Add and subtract within 20.	
11. Fluently add and subtract within 20 using mental strategies such as	G2 Develop lines of inquiry (as
counting on, making ten, decomposing a number leading to ten, using the	developmentally appropriate) to
relationship between addition and subtraction, and creating equivalent but	understand why things are true and why
easier or known sums.	they are false.
a. State automatically all sums of two one-digit numbers.	
	DS4 Exhibit joy at solving difficult
	mathematical problems and operations.
Work with equal groups of objects to gain found	ations for multiplication.
12. Using concrete and pictorial representations and repeated addition,	G2 Develop lines of inquiry (as
determine the total number of objects in a rectangular array with up to 5	developmentally appropriate) to
rows and up to 5 columns.	understand why things are true and why
a. Write an equation to express the total number of objects in a	they are false.
rectangular array with up to 5 rows and up to 5 columns as a sum of	
equal addends.	DS4 Exhibit joy at solving difficult
	mathematical problems and operations.
Understand simple pattern	15.
13. Reproduce, extend, create, and describe patterns and sequences using a	G2 Develop lines of inquiry (as
variety of materials.	developmentally appropriate) to
	understand why things are true and why
	they are false.
	DS4 Exhibit joy at solving difficult
	mathematical problems and operations.

Data Analysis, Statistics, and Probability		
Collect and analyze data and interpret results.		
 14. Measure lengths of several objects to the nearest whole unit. a. Create a line plot where the horizontal scale is marked off in whole-number units to show the lengths of several measured objects. 15. Create a picture graph and bar graph to represent data with up to four categories. a. Using information presented in a bar graph, solve simple "puttogether," "take-apart," and "compare" problems. b. Using Venn diagrams, pictographs, and "yes-no" charts, analyze data 	GS1 Demonstrate the mental habits of precise, determined, careful, and accurate questioning, inquiry, and reasoning. DS3 Show interest in the pursuit of understanding for its own sake.	
to predict an outcome.		
Measurement		
Measure and estimate lengths in standard units.		
 16. Measure the length of an object by selecting and using standard units of measurement shown on rulers, yardsticks, meter sticks, or measuring tapes. 17. Measure objects with two different units, and describe how the two measurements relate to each other and the size of the unit chosen 	GS4 Survey the truths about mathematical objects that are interesting in their own right and independent of human opinions.	
 18. Estimate lengths using the following standard units of measurement: inches, feet, centimeters, and meters. 19. Measure to determine how much longer one object is than another 	DS1 Display a sense of wonder about	
expressing the length difference of the two objects using standard units of length.	mathematical relationships as well as confidence in mathematical certitude.	
Relate addition and subtraction to length.		
20. Use addition and subtraction within 100 to solve word problems involving same units of length, representing the problem with drawings (such as drawings of rulers) and/or equations with a symbol for the unknown number.	GS4 Survey the truths about mathematical objects that are interesting in their own right and	
21. Create a number line diagram using whole numbers and use it to represent whole-number sums and differences within 100.	independent of human opinions.	

	DS1 Display a sense of wonder about mathematical relationships as well as
	confidence in mathematical certitude.
Work with time and mone	ý.
22. Tell and write time from analog and digital clocks to the nearest five	
minutes, using a.m. and p.m.	GS4 Survey the truths about
a. Express an understanding of common terms such as, but not limited	mathematical objects that are
to, quarter past, half past, and quarter to.	interesting in their own right and
23. Solve problems with money.	independent of human opinions.
a. Identify nickels and quarters by name and value.	
b. Find the value of a collection of quarters, dimes, nickels, and pennies.	DS1 Display a sense of wonder about
c. Solve word problems by adding and subtracting within one dollar,	mathematical relationships as well as
using the \$ and ¢ symbols appropriately (not including decimal	confidence in mathematical certitude.
notation).	
Geometry	
Reason with shapes and their att	ributes.
24. Identify triangles, quadrilaterals, pentagons, hexagons, and cubes.	
a. Recognize and draw shapes having specified attributes. Examples: a	GS4 Survey the truths about
given number of angles or a given number of equal faces.	mathematical objects that are
25. Partition a rectangle into rows and columns of same-size squares, and	interesting in their own right and
count to find the total number of squares.	independent of human opinions.
26. Partition circles and rectangles into two, three, or four equal shares.	
Describe the shares using such terms as halves, thirds, half of, or a third of,	DS2 Respond to the beauty, harmony,
and describe the whole as two halves, three thirds, or four fourths.	proportion, radiance, and wholeness
a. Explain that equal shares of identical wholes need not have the same	present in mathematics.
shape.	

Third Grade

Standard	Cardinal Newman	Date
		Taught
Number Properties and Operation	ons (NAEP)	
Operations with Numbers: Bas	se 10	
Use place value understanding and properties of operations	s to perform multi-digit arithmetic.	
1. Identify the nearest 10 or 100 when rounding whole numbers, using place	GS2 Develop lines of inquiry (as	
value understanding.	developmentally appropriate) to	
2. Use various strategies to add and subtract fluently within 1000.	understand why things are true and why	
Examples of strategies include but are not limited to place value and	they are false.	
properties.		
3. Use concrete materials and pictorial models based on place value and	GS3 Recognize the power of the human	
properties of operations to find the product of a one-digit whole number by a	mind as both a gift from God and a	
multiple of ten (from 10 to 90).	reflection of Him in whose image and	
	likeness we are made.	
	DS5 Show interest in now the mental	
	processes evident within the discipline of	
	mathematics (such as order,	
	perseverance, and logical reasoning) help	
	us with the development of the hatural	
	virtues (such as self-discipline and	
	fortitude).	

Operations with Numbers: Fractions		
Develop understanding of fractions as numbers. Denominators are limited to 2, 3, 4, 6, and 8.		
4. Demonstrate that a unit fraction represents one part of an area model or		
length model of a whole that has been equally partitioned; explain that a	GS2 Develop lines of inquiry (as	
numerator greater than one indicates the number of unit pieces represented	developmentally appropriate) to	
by the fraction.	understand why things are true and why	
5. Interpret a fraction as a number on the number line; locate or represent	they are false.	
fractions on a number line diagram.		
a. Represent a unit fraction (1/b) on a number line by defining the	GS3 Recognize the power of the human	
interval from 0 to 1 as the whole and partitioning it into b equal parts	mind as both a gift from God and a	
as specified by the denominator.	reflection of Him in whose image and	
b. Represent a fraction (a/b) on a number line by marking off a length of	likeness we are made.	
size (1/b) from zero.		
6. Explain equivalence and compare fractions by reasoning about their size	DS5 Show interest in how the mental	
using visual fraction models and number lines.	processes evident within the discipline of	
a. Express whole numbers as fractions and recognize fractions that are	mathematics (such as order,	
equivalent to whole numbers.	perseverance, and logical reasoning) help	
b. Compare two fractions with the same numerator or with the same	us with the development of the natural	
denominator by reasoning about their size (recognizing that fractions	virtues (such as self-discipline and	
must refer to the same whole for the comparison to be valid). Record	fortitude).	
comparisons using < , >, or = and justify conclusions.		
Algebra: Operations and Algebra	aic Thinking	
Represent and solve problems involving multiplication and division.		
7. Illustrate the product of two whole numbers as equal groups by identifying	G2 Develop lines of inquiry (as	
the number of groups and the number in each group and represent as a	developmentally appropriate) to	
written expression.	understand why things are true and why	
8. Illustrate and interpret the quotient of two whole numbers as the number	they are false	
of objects in each group or the number of groups when the whole is		
partitioned into equal shares.		

9. Solve word situations using multiplication and division within 144 involving	DS4 Exhibit joy at solving difficult
equal groups, arrays, and measurement quantities; represent the situation	mathematical problems and operations.
using models, drawings, and equations with a symbol for the unknown	
number.	
10. Determine the unknown whole number in a multiplication or division	
equation relating three whole numbers.	
Understand properties of multiplication and the relationship	between multiplication and division.
Note: Students need not use formal terms for	or these properties
11. Develop and apply properties of operations as strategies to multiply and	G2 Develop lines of inquiry (as
divide.	developmentally appropriate) to
12. Use the relationship between multiplication and division to represent	understand why things are true and why
division as an equation with an unknown factor.	they are false.
	DS4 Exhibit joy at solving difficult
	mathematical problems and operations.
Multiply and divide within 1	44.
13. Use strategies based on properties and patterns of multiplication to	G2 Develop lines of inquiry (as
demonstrate fluency with multiplication and division within 144.	developmentally appropriate) to
a. Fluently determine all products obtained by multiplying two factors	understand why things are true and why
through 12.	they are false.
b. State automatically all products of two whole numbers through 12 by	
the end of third grade.	DS4 Exhibit joy at solving difficult
	mathematical problems and operations.
Solve problems involving the four operations and identify a	and explain patterns in arithmetic.
14. Determine and justify solutions for two-step word problems using the	G2 Develop lines of inquiry (as
four operations and write an equation with a letter standing for the unknown	developmentally appropriate) to
quantity. Determine reasonableness of answers using number sense, context,	understand why things are true and why
mental computation, and estimation strategies including rounding.	they are false.
15. Recognize and explain arithmetic patterns using properties of operations.	
	DS4 Exhibit joy at solving difficult
	mathematical problems and operations.

Data Analysis, Statistics, and Probability		
Represent and interpret data.		
16. For a given or collected set of data, create a scaled (one-to-many) picture	GS1 Demonstrate the mental habits of	
graph and scaled bar graph to represent a data set with several categories.	precise, determined, careful, and	
a. Determine a simple probability from a context that includes a picture.	accurate questioning, inquiry, and	
b. Solve one- and two-step "how many more" and "how many less"	reasoning.	
problems using information presented in scaled graphs.		
	DS3 Show interest in the pursuit of	
	understanding for its own sake.	
Measurement		
17. Measure lengths using rulers marked with halves and fourths of an inch	DS1 Display a sense of wonder about	
to generate data and create a line plot marked off in appropriate units to	mathematical relationships as well as	
display the data.	confidence in mathematical certitude.	
Solve problems involving measurement and estimation of intervals of time, liquid volumes, and masses of objects		
18. Tell and write time to the nearest minute; measure time intervals in	GS4 Survey the truths about	
minutes (within 90 minutes.) a. Solve real-world problems involving addition	mathematical objects that are interesting	
and subtraction of time intervals in minutes by representing the problem on	in their own right and independent of	
a number line diagram.	human opinions.	
19. Estimate and measure liquid volumes and masses of objects using liters		
(I), grams (g), and kilograms (kg).	DS1 Display a sense of wonder about	
a. Use the four operations to solve one-step word problems involving	mathematical relationships as well as	
masses or volumes given in the same metric units.	confidence in mathematical certitude.	
Geometric measurement: understand concepts of area and relate area to multiplication and to addition.		
20. Find the area of a rectangle with whole number side lengths by tiling		
without gaps or overlays and counting unit squares. Show that the area	GS4 Survey the truths about	
found is the same as would be found by multiplying side lengths.	mathematical objects that are interesting	
21. Count unit squares (square cm, square m, square in, square ft, and	in their own right and independent of	
improvised or non-standard units) to determine area.	human opinions.	
22. Relate area to the operations of multiplication using real-world problems,		
concrete materials, mathematical reasoning, and the distributive property.		

23. Decompose rectilinear figures into smaller rectangles to find the area,	DS1 Display a sense of wonder about	
using concrete materials.	mathematical relationships as well as	
	confidence in mathematical certitude.	
Geometric measurement: Recognize perimeter as an attribute of plane figure	s and distinguish between linear and area me	easures.
24. Construct rectangles with the same perimeter and different areas or the same area and different perimeters.	GS4 Survey the truths about	
25. Use tiling to show in a concrete case that the area of a rectangle with whole-number side lengths a and $b + c$ is the sum of $a \times b$ and $a \times c$. Use area models to represent the distributive property in mathematical reasoning. (DOB)	in their own right and independent of human opinions.	
26. Solve real-world problems involving perimeters of polygons, including finding the perimeter given the side lengths and finding an unknown side length of rectangles.	DS1 Display a sense of wonder about mathematical relationships as well as confidence in mathematical certitude.	
Geometry		
Reason with shapes and their attributes.		
27. Recognize and describe polygons (up to 8 sides), triangles, and quadrilaterals (rhombuses, rectangles, and squares) based on the number of sides and the presence or absence of square corners. a. Draw examples of quadrilaterals that are and are not rhombuses, rectangles, and squares.	GS4 Survey the truths about mathematical objects that are interesting in their own right and independent of human opinions.	
	DS2 Respond to the beauty, harmony, proportion, radiance, and wholeness present in mathematics.	

Fourth Grade

Standard	Cardinal Newman	Date
		Taught
Number Properties and Ope	rations	
Operations with Numbers: Bas	se 10	
Generalize place value understanding for multi	idigit whole numbers.	
1. Using models and quantitative reasoning, explain that in a multi-digit	GS2 Develop lines of inquiry (as	
whole number, a digit in any place represents ten times what it represents in	developmentally appropriate) to	
the place to its right.	understand why things are true and why	
2. Read and write multi-digit whole numbers using standard form, word form,	they are false.	
and expanded form.		
3. Use place value understanding to compare two multi-digit numbers using	GS3 Recognize the power of the human	
>, =, and < symbols.	mind as both a gift from God and a	
4. Round multi-digit whole numbers to any place using place value	reflection of Him in whose image and	
understanding.	likeness we are made.	
	DS5 Show interest in how the mental	
	processes evident within the discipline of	
	mathematics (such as order,	
	perseverance, and logical reasoning) help	
	us with the development of the natural	
	virtues (such as self-discipline and	
	fortitude).	
Use place value understanding and properties of operations to perform multi-digit arithmetic with whole numbers.		
5. Use place value strategies to fluently add and subtract multi-digit whole	GS2 Develop lines of inquiry (as	
numbers and connect strategies to the standard algorithm.	developmentally appropriate) to	

6. Find the product of two factors (up to four digits by a one-digit number and	understand why things are true and why	
two two-digit numbers), using strategies based on place value and the	they are false.	
properties of operations.		
a. Illustrate and explain the product of two factors using equations,	GS3 Recognize the power of the human	
rectangular arrays, and area models.	mind as both a gift from God and a	
7. Use strategies based on place value, properties of operations, and/or the	reflection of Him in whose image and	
relationship between multiplication and division to find whole-number	likeness we are made.	
dividende	DS5 Show interest in how the mental	
a Illustrate and/or explain quetients using equations, restangular arrays	processes evident within the discipline of	
a. Indicitate and/or explain quotients using equations, rectangular arrays,	mathematics (such as order	
	perseverance, and logical reasoning) help	
	us with the development of the natural	
	virtues (such as self-discipline and	
	fortitude).	
Operations with Numbers: Frac	ctions	
Extend understanding of fraction equivale	nce and ordering.	
Denominators are limited to 2, 3, 4, 5, 6, 8	, 10, 12, and 100.	
8. Using area and length fraction models, explain why one fraction is	GS2 Develop lines of inquiry (as	
equivalent to another, taking into account that the number and size of the	developmentally appropriate) to	
parts differ even though the two fractions themselves are the same size.	understand why things are true and why	
a. Apply principles of fraction equivalence to recognize and generate	they are false.	
equivalent fractions.		
Example: $\frac{a}{b}$ is equivalent to $\frac{n \times a}{n \times b}$	GS3 Recognize the power of the human	
9. Compare two fractions with different numerators and different	mind as both a gift from God and a	
denominators using concrete models, benchmarks (0, ½, 1), common	reflection of Him in whose image and	
denominators, and/or common numerators, recording the comparisons with	likeness we are made.	
symbols >, =, or <, and justifying the conclusions.		
a. Recognize that comparisons are valid only when the two fractions	DS5 Show interest in how the mental	
refer to the same whole. Record the results of comparisons with	processes evident within the discipline of	
	mathematics (such as order,	

symbols >, fraction mo	=, or <, and justify the conclusions, e.g., by using a visual odel.	perseverance, and logical reasoning) help us with the development of the natural virtues (such as self-discipline and fortitude).	
Build fractio	ons from unit fractions by applying and extending previous ur	derstandings of operations on whole numbe	ers.
10. Identify that a	fraction a/b where a>1 represents more than a whole and		
can be written as a	a mixed number. Use models to justify. (DOB)		
11. Model and just	tify decompositions of fractions and explain addition and		
subtraction of frac	tions as joining or separating parts/partitioning referring to		
the same whole.		GS2 Develop lines of inquiry (as	
a. Decompos	e a fraction as a sum of unit fractions and as a sum of	developmentally appropriate) to	
fractions w	ith the same denominator in more than one way using area	understand why things are true and why	
models, ler	ngth models, and equations.	they are false.	
b. Add and su	btract fractions and mixed numbers with like denominators		
using fracti	ion equivalence, properties of operations, and the	GS3 Recognize the power of the human	
relationshi	p between addition and subtraction.	mind as both a gift from God and a	
c. Solve word	problems involving addition and subtraction of fractions	reflection of Him in whose image and	
and mixed	numbers having like denominators, using drawings, visual	likeness we are made.	
fraction mo	odels, and equations to represent the problem.		
12. Apply and exte	and previous understandings of multiplication to multiply a	DS5 Show interest in how the mental	
whole number tim	les a fraction.	processes evident within the discipline of	
	explain that a fraction a/b is a multiple of a unit fraction	mathematics (such as order,	
9	a 1	perseverance, and logical reasoning) help	
Example: $\frac{1}{8}$	$=9 \times \frac{1}{8}$	us with the development of the natural	
b. Extend pre	vious understanding of multiplication to multiply a whole	virtues (such as self-discipline and	
number tin	nes any fraction less than one.	fortitude).	
Example: 4	$+ \times \frac{2}{3} = \frac{4 \times 2}{3}$		
c. Solve word	problems involving multiplying a whole number times a		
fraction usi	ing visual fraction models and equations to represent the		
problem.			

Example: $3 \times \frac{1}{2}$, $6 \times \frac{1}{8}$		
Understand decimal notation for fractions, and compare decimal fractions. Denominators are limited to 10 and 100.		
13. Express a fraction with denominator 10 as an equivalent fraction with	GS2 Develop lines of inquiry (as	
denominator 100	developmentally appropriate) to	
a. Use this technique to add two fractions with respective denominators	understand why things are true and why	
10 and 100.	they are false.	
(Students who can generate equivalent fractions can develop		
strategies for adding fractions with unlike denominators in general.	GS3 Recognize the power of the human	
But addition and subtraction with unlike denominators in general is	mind as both a gift from God and a	
not a requirement at this grade.)	reflection of Him in whose image and	
14. Use models and decimal notation to represent fractions with	likeness we are made.	
denominators of 10 and 100.		
15. Use visual models and reasoning to compare two decimals to hundredths	DS5 Show interest in how the mental	
(referring to the same whole), recording comparisons using symbols >, =, or <,	processes evident within the discipline of	
and justifying the conclusions.	mathematics (such as order,	
	perseverance, and logical reasoning) help	
	us with the development of the natural	
	virtues (such as self-discipline and	
	fortitude).	
Algebra: Operations and Algebra	ic Thinking	
Solve problems with whole numbers using t	he four operations	
16. Interpret and write multiplication equations as a comparison, e.g.,		
interpret $35 = 5 \times 7$ as a statement that 35 is 5 times as many as 7 and 7 times	G2 Develop lines of inquiry (as	
as many as 5. Represent verbal statements of multiplicative comparisons as	developmentally appropriate) to	
multiplication equations.	understand why things are true and why	
17. Solve word problems involving multiplicative comparison using drawings	they are false.	
and write equations to represent the problem, using a symbol for the		
unknown number.	DS4 Exhibit joy at solving difficult	
18. Determine and justify solutions for multi-step word problems, including	mathematical problems and operations.	
problems where remainders must be interpreted.		

a. Write equations to show solutions for multi-step word problems with	
a letter standing for the unknown quantity	
b. Determine reasonableness of answers for multi-step word problems,	
using mental computation and estimation strategies including	
Founding.	
19. For whole numbers in the range 1 to 100, find all factor pairs, identifying a	G2 Develop lines of inquiry (as
number as a multiple of each of its factors.	developmentally appropriate) to
a. Determine whether a whole number in the range 1 to 100 is a	understand why things are true and why
multiple of a given one-digit number.	they are false.
b. Determine whether a whole number in the range 1 to 100 is prime or	
composite.	DS4 Exhibit joy at solving difficult
	mathematical problems and operations.
Generate and analyze patter	ns.
20. Generate and analyze a number or shape pattern that follows a given	G2 Develop lines of inquiry (as
rule.	developmentally appropriate) to
	understand why things are true and why
	they are false.
	DS4 Exhibit joy at solving difficult
	mathematical problems and operations.
Data Analysis, Statistics, and Pr	robability
Represent and interpret dat	ta.
21. Interpret data in graphs (picture, bar, and line plots) to solve problems	GS1 Demonstrate the mental habits of
using numbers and operations.	precise, determined, careful, and
a. Create a line plot to display a data set of measurements in fractions of	accurate questioning, inquiry, and
a unit $(\frac{1}{2}, \frac{1}{4}, \frac{1}{2})$.	reasoning.
b. Solve problems involving addition and subtraction of fractions using	
information presented in line plots.	DS3 Show interest in the pursuit of
	understanding for its own sake.

Measurement			
Solve problems involving measurement and conversion of measurements from a larger unit to a smaller unit.			
22. Select and use an appropriate unit of measurement for a given attribute			
(length, mass, liquid volume, time) within one system of units: metric - km, m,			
cm; kg, g, l, ml; customary - lb, oz; time - hr, min, sec.			
a. Within one system of units, express measurements of a larger unit in	GS4 Survey the truths about		
terms of a smaller unit. Record measurement equivalents in a two-	mathematical phiosts that are interacting		
column table.	in their own right and independent of		
23. Use the four operations to solve measurement word problems with	human opinions		
distance, intervals of time, liquid volume, mass of objects, and money.			
a. Solve measurement problems involving simple fractions or decimals.	DS1 Display a sense of wonder about		
b. Solve measurement problems that require expressing measurements	mathematical relationships as well as		
given in a larger unit in terms of a smaller unit.	confidence in mathematical cortitude		
c. Represent measurement quantities using diagrams such as number			
line diagrams that feature a measurement scale.			
24. Apply area and perimeter formulas for rectangles in real-world and			
mathematical situations.			
Geometric measurement: understand concepts of angle and measure angles.			
25. Draw and identify lines and angles, and identify shapes by properties of	GS4 Survey the truths about		
their lines and angles.	mathematical objects that are interesting		
26. Use a protractor to measure angles in whole-number degrees and sketch	in their own right and independent of		
angles of specified measure	human opinions.		
27. Decompose an angle into non-overlapping parts to demonstrate that the			
angle measure of the whole is the sum of the angle measures of the parts.	DS1 Display a sense of wonder about		
a. Solve addition and subtraction problems on a diagram to find	mathematical relationships as well as		
unknown angles in real-world or mathematical problems.	confidence in mathematical certitude.		

Geometry		
Draw and identify lines and angles, and identify shapes by properties of their lines and angles.		
28. Draw points, lines, line segments, rays, angles (right, acute, obtuse), and		
perpendicular and parallel lines, and identify these in two-dimensional	GS4 Survey the truths about	
figures.	mathematical objects that are interesting	
29. Identify two-dimensional figures based on the presence or absence of	in their own right and independent of	
parallel or perpendicular lines or the presence or absence of angles of a	human opinions.	
specified size.		
a. Describe right triangles as a category, and identify right triangles.	DS2 Respond to the beauty, harmony,	
30. Define a line of symmetry for a two-dimensional figure as a line across the	proportion, radiance, and wholeness	
figure such that the figure can be folded along the line into matching parts	present in mathematics.	
a. Identify line-symmetric figures and draw lines of symmetry		
Fifth Grade

Standard	Cardinal Newman	Date
		Taught
Number Properties and Operation	ons (NAEP)	
Operations with Numbers: Bas	se 10	
1. Using models and quantitative reasoning, explain that in a multi-digit		
number, including decimals, a digit in any place represents ten times what it		
represents in the place to its right and 1/10 of what it represents in the place	GS2 Develop lines of inquiry (as	
to its left.	developmentally appropriate) to	
a. Explain patterns in the number of zeros of the product when	understand why things are true and why	
multiplying a number by powers of 10, using whole-number	they are false.	
exponents to denote powers of 10. 3b. Explain patterns in the		
placement of the decimal point when a decimal is multiplied or	GS3 Recognize the power of the human	
divided by a power of 10, using whole-number exponents to denote	mind as both a gift from God and a	
powers of 10.	reflection of Him in whose image and	
2. Read, write, and compare decimals to thousandths.	likeness we are made.	
a. Read and write decimals to thousandths using base-ten numerals,		
number names, and expanded form.	DS5 Show interest in how the mental	
b. Compare two decimals to thousandths based on the meaning of the	processes evident within the discipline	
digits in each place, using >, =, and < to record the results of	of mathematics (such as order,	
comparisons.	perseverance, and logical reasoning)	
3. Use place value understanding to round decimals to thousandths.	help us with the development of the	
4. Fluently multiply multi-digit whole numbers using the standard algorithm.	natural virtues (such as self-discipline	
5. Use strategies based on place value, properties of operations, and/or the	and fortitude).	
relationship between multiplication and division to find whole-number		
quotients and remainders with up to four-digit dividends and two-digit		

divisors. Illustrate and explain the calculation by using equations, rectangular		
arrays, and/or area models.		
6. Add, subtract, multiply, and divide decimals to hundredths using strategies		
based on place value, properties of operations, and/or the relationships		
between addition/subtraction and multiplication/division; relate the strategy		
to a written method, and explain the reasoning used. a. Use concrete models,		
drawings, and the standard algorithm to solve problems with decimals to		
hundredths. b. Solve problems in a real-world context with decimals to		
hundredths.		
Operations with Numbers: Frac	tions	
7. Model and solve real-word problems involving addition and subtraction of		
fractions referring to the same whole, including cases of unlike denominators,	GS2 Dovelop lines of inquiry (as	
using visual fraction models or equations to represent the problem. Use	dovelopmentally appropriate) to	
benchmark fractions and number sense of fractions to estimate mentally, and	understand why things are true and why	
assess the reasonableness of answers.	thow are false	
8. Add and subtract fractions and mixed numbers with unlike denominators,		
using fraction equivalence to calculate a sum or difference of fractions or	GS3 Recognize the nower of the human	
mixed numbers with like denominators.	mind as both a gift from God and a	
9. Solve word problems involving division of whole numbers leading to	reflection of Him in whose image and	
answers in the form of fractions or mixed numbers.	likonoss wo aro mado	
a. Model and interpret a fraction as division of the numerator by the		
denominator (a/b= a ÷ b)	DS5 Show interest in how the mental	
b. Use visual fraction models, drawings, or equations to represent word	processes evident within the discipline	
problems involving division of whole numbers leading to answers in	of mathematics (such as order	
the form of fractions or mixed numbers	perseverance, and logical reasoning)	
10. Apply and extend previous understandings of multiplication to find the	help us with the development of the	
product of a fraction times a whole number or a fraction times a fraction.	natural virtues (such as self-discipline	
a. Use a visual fraction model (area model, set model, or linear model) to	and fortitude)	
show (a/b) × q and create a story context for this equation to interpret		
the product as a parts of a partition of q into b equal parts.		

b.	Use a visual fraction model (area model, set model, or linear model) to		
	show (a/b) × (c/d) and create a story context for this equation to		
	interpret the product.		
с.	Multiply fractional side lengths to find areas of rectangles, and		
	represent fraction products as rectangular areas. d. Find the area of a		
	rectangle with fractional side lengths by tiling it with unit squares of		
	the appropriate unit fraction side lengths to show that the area is the		
	same as would be found by multiplying the side lengths.		
11. Int	erpret multiplication as scaling (resizing).	GS2 Develop lines of inquiry (as	
a.	Compare the size of a product to the size of one factor on the basis of	developmentally appropriate) to	
	the size of the other factor, without performing the indicated	understand why things are true and why	
	multiplication	they are false.	
b.	Explain why multiplying a given number by a fraction greater than 1		
	results in a product greater than the given number and relate the	GS3 Recognize the power of the human	
	principle of fraction equivalence.	mind as both a gift from God and a	
с.	Explain why multiplying a given number by a fraction less than 1	reflection of Him in whose image and	
	results in a product smaller than the given number and relate the	likeness we are made.	
	principle of fraction equivalence.		
12. M	odel and solve real-world problems involving multiplication of fractions	DS5 Show interest in how the mental	
and m	ixed numbers using visual fraction models, drawings, or equations to	processes evident within the discipline	
repres	sent the problem.	of mathematics (such as order,	
		perseverance, and logical reasoning)	
		help us with the development of the	
		natural virtues (such as self-discipline	
		and fortitude).	

13. Apply and extend previous understandings of division to divide unit		
fractions by whole numbers and whole numbers by unit fractions (division of		
a fraction by a fraction is not a requirement at this grade).		
a. Solve real-world problems involving division of unit fractions by non-		
zero whole numbers and division of whole numbers by unit fractions		
and illustrate using visual fraction models, drawings, and equations to		
represent the problem.		
b. Create a story context for a unit fraction divided by a whole number,		
and use a visual fraction model to show the quotient.		
c. Create a story context for a whole number divided by a unit fraction,		
and use a visual fraction model to show the quotient		
Algebra		
Algebra Operations and Algebraic Thir	lking	
Algebra Operations and Algebraic Thir 14. Write, explain, and evaluate simple numerical expressions involving the	nking	
Algebra Operations and Algebraic Thir 14. Write, explain, and evaluate simple numerical expressions involving the four operations to solve up to two-step problems. Include expressions	iking G2 Develop lines of inquiry (as	
Algebra Operations and Algebraic Thir 14. Write, explain, and evaluate simple numerical expressions involving the four operations to solve up to two-step problems. Include expressions involving parentheses, brackets, or braces, using commutative, associative,	G2 Develop lines of inquiry (as developmentally appropriate) to	
Algebra Operations and Algebraic Thir 14. Write, explain, and evaluate simple numerical expressions involving the four operations to solve up to two-step problems. Include expressions involving parentheses, brackets, or braces, using commutative, associative, and distributive properties.	king G2 Develop lines of inquiry (as developmentally appropriate) to understand why things are true and why	
Algebra Operations and Algebraic Thir 14. Write, explain, and evaluate simple numerical expressions involving the four operations to solve up to two-step problems. Include expressions involving parentheses, brackets, or braces, using commutative, associative, and distributive properties. 15. Generate two numerical patterns using two given rules and complete an	G2 Develop lines of inquiry (as developmentally appropriate) to understand why things are true and why they are false.	
Algebra Operations and Algebraic Thir 14. Write, explain, and evaluate simple numerical expressions involving the four operations to solve up to two-step problems. Include expressions involving parentheses, brackets, or braces, using commutative, associative, and distributive properties. 15. Generate two numerical patterns using two given rules and complete an input/output table for the data. a. Use data from an input/output table to	G2 Develop lines of inquiry (as developmentally appropriate) to understand why things are true and why they are false.	
Algebra Operations and Algebraic Thir 14. Write, explain, and evaluate simple numerical expressions involving the four operations to solve up to two-step problems. Include expressions involving parentheses, brackets, or braces, using commutative, associative, and distributive properties. 15. Generate two numerical patterns using two given rules and complete an input/output table for the data. a. Use data from an input/output table to identify apparent relationships between corresponding terms. b. Form	G2 Develop lines of inquiry (as developmentally appropriate) to understand why things are true and why they are false. DS4 Exhibit joy at solving difficult	
Algebra Operations and Algebraic Thir 14. Write, explain, and evaluate simple numerical expressions involving the four operations to solve up to two-step problems. Include expressions involving parentheses, brackets, or braces, using commutative, associative, and distributive properties. 15. Generate two numerical patterns using two given rules and complete an input/output table for the data. a. Use data from an input/output table to identify apparent relationships between corresponding terms. b. Form ordered pairs from values in an input/output table. c. Graph ordered pairs	G2 Develop lines of inquiry (as developmentally appropriate) to understand why things are true and why they are false. DS4 Exhibit joy at solving difficult mathematical problems and operations.	

Data Analysis, Statistics, and Probability (NAEP) (was Measurement and Data DOB)		
Data Analysis		
16. Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8).a. Add, subtract, multiply, and divide fractions to solve problems involving information presented in line plots.	GS1 Demonstrate the mental habits of precise, determined, careful, and accurate questioning, inquiry, and reasoning.	
	DS3 Show interest in the pursuit of	
	understanding for its own sake.	
Measurement		
17. Convert among different-sized standard measurement units within a given measurement system and use these conversions in solving multi-step, real-world problems.		
18. Identify volume as an attribute of solid figures, and measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised (non-		
standard) units. a. Pack a solid figure without gaps or overlaps using n unit cubes to demonstrate volume as n cubic units	GS4 Survey the truths about mathematical objects that are	
19. Relate volume to the operations of multiplication and addition, and solve real-world and mathematical problems involving volume.	interesting in their own right and independent of human opinions.	
 a. Use the associative property of multiplication to find the volume of a right rectangular prism and relate it to packing the prism with unit cubes. Show that the volume can be determined by multiplying the three edge lengths or by multiplying the height by the area of the base. 	DS1 Display a sense of wonder about mathematical relationships as well as confidence in mathematical certitude.	
 b. Apply the formulas V = I × w × h and V = B × h for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real-world and mathematical problems 		

c. Find volumes of solid figures composed of two non-overlapping right rectangular prisms by adding the volumes of the two parts, applying this technique to solve real-world problems.	
Geometry	
20. Graph points in the first quadrant of the coordinate plane, and interpret coordinate values of points to represent real-world and mathematical problems.	GS4 Survey the truths about mathematical objects that are interesting in their own right and
21. Classify triangles according to side length (isosceles, equilateral, scalene) and angle measure (acute, obtuse, right, equiangular).	independent of human opinions.
22. Classify quadrilaterals in a hierarchy based on properties.	DS2 Respond to the beauty, harmony,
23. Explain that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category.	proportion, radiance, and wholeness present in mathematics.

Sixth Grade

Standard	Cardinal Newman	Date
		Taught
Number Properties and Ope	rations	
Proportional Reasoning		
Develop an understanding of ratio concepts and use reason	ing about ratios to solve problems.	
1. Use appropriate notations [a/b, a to b, a:b] to represent a proportional	GS2 Develop lines of inquiry (as	
relationship between quantities and use ratio language to describe the	developmentally appropriate) to	
relationship between quantities.	understand why things are true and why	
2. Use unit rates to represent and describe ratio relationships.	they are false.	
3. Use ratio and rate reasoning to solve mathematical and real-world		
problems (including but not limited to percent, measurement conversion,	GS3 Recognize the power of the human	
and equivalent ratios) using a variety of models, including tables of	mind as both a gift from God and a	
equivalent ratios, tape diagrams, double number lines, and equations.	reflection of Him in whose image and	
a. Find a percent of a quantity as a rate per 100; solve problems	likeness we are made.	
involving finding the whole, given a part and the percent. (DOB)		
b. Use ratio reasoning to convert measurement units; manipulate and	DS5 Show interest in how the mental	
transform units appropriately when multiplying or dividing quantities.	processes evident within the discipline of	
(DOB)	mathematics (such as order,	
	perseverance, and logical reasoning) help	
	us with the development of the natural	
	virtues (such as self-discipline and	
	fortitude).	

Number Systems and Operations		
Use prior knowledge of multiplication and division to divide fractions.		
4. Interpret and compute quotients of fractions using visual models and		
equations to represent problems.		
a. Use quotients of fractions to analyze and solve problems.		
Compute multi-digit numbers fluently and determine c	ommon factors and multiples.	
5. Fluently divide multi-digit whole numbers using a standard algorithm to	GS2 Develop lines of inquiry (as	
solve real-world and mathematical problems.	developmentally appropriate) to	
6. Fluently add, subtract, multiply, and divide decimals using a standard	understand why things are true and why	
algorithm.	they are false.	
7. Use the distributive property to express the sum of two whole numbers		
with a common factor as a multiple of a sum of two whole numbers with no	GS3 Recognize the power of the human	
common factor.	mind as both a gift from God and a	
8. Find the greatest common factor (GCF) and least common multiple (LCM)	reflection of Him in whose image and	
of two or more whole numbers.	likeness we are made.	
a. Use factors and multiples to determine prime factorization.		
	DS5 Show interest in how the mental	
	processes evident within the discipline of	
	mathematics (such as order,	
	perseverance, and logical reasoning) help	
	us with the development of the natural	
	virtues (such as self-discipline and	
	fortitude).	
Apply knowledge of the number system to represent and use r	rational numbers in a variety of forms.	
9. Understand that positive and negative numbers are used together to	CS2 Develop lines of inquiry (as	
describe quantities having opposite directions or values; use positive and	dovelopmentally appropriate) to	
negative numbers to represent quantities in real-world contexts explaining	understand why things are true and why	
the meaning of 0 in each situation.	they are false	
10. Locate integers and other rational numbers on a horizontal or vertical line		
diagram.		

a.	Define opposites as numbers located on opposite sides of 0 and the	GS3 Recognize the power of the human	
	same distance from 0 on a number line.	mind as both a gift from God and a	
b.	Use rational numbers in real-world and mathematical situations,	reflection of Him in whose image and	
	explaining the relationship to 0 in each situation.	likeness we are made.	
11. Fin	d the position of pairs of integers and other rational numbers on the		
coordi	nate plane.	DS5 Show interest in how the mental	
a.	Identify quadrant locations of ordered pairs on the coordinate plane	processes evident within the discipline of	
	based on the signs of the x and y coordinates.	mathematics (such as order,	
b.	Identify (<i>a</i> , <i>b</i>) and (<i>a</i> ,- <i>b</i>) as reflections across the <i>x</i> -axis.	perseverance, and logical reasoning) help	
с.	Identify (<i>a</i> , <i>b</i>) and (- <i>a</i> , <i>b</i>) as reflections across the <i>y</i> -axis.	us with the development of the natural	
d.	Solve real-world and mathematical problems by graphing points in all	virtues (such as self-discipline and	
	four quadrants of the coordinate plane, including finding distances	fortitude).	
	between points with the same first or second coordinate.		
12. Exj	blain the meaning of absolute value and determine the absolute value		
of ratio	onal numbers in real-world contexts.		
13. CO	mpare and order rational numbers and absolute value of rational		
numbe	ers with and without a number line in order to solve real-world and		
mathe	matical problems.		
	Algebra: Algebra and Func	tions	
	Apply knowledge of arithmetic to read, write, and eva	aluate algebraic expressions.	1
14. Wr	ite, evaluate, and compare expressions involving whole number		
expon	ents.	G2 Develop lines of inquiry (as	
15. Wr	ite, read, and evaluate expressions in which letters represent numbers	developmentally appropriate) to	
in real-	world contexts.	understand why things are true and why	
a.	Interpret a variable as an unknown value for any number in a	they are false	
	specified set, depending on the context.		
b.	Write expressions to represent verbal statements and real-world	DS4 Exhibit iov at solving difficult	
	scenarios.	mathematical problems and operations	
с.	Identify parts of an expression using mathematical terms such as sum,		
	term, product, factor, quotient, and coefficient.		

 d. Evaluate expressions (which may include absolute value and whole number exponents) with respect to order of operations. Include expressions that arise from formulas used in real-world problems. Perform arithmetic operations, including those involving whole-number exponents, in the conventional order when there are no parentheses to specify a particular order (Order of Operations). 		
16. Generate equivalent algebraic expressions using the properties of		
operations, including inverse, identity, commutative, associative, and		
distributive.		
17. Determine whether two expressions are equivalent and justify the		
reasoning.		
Use equations and inequalities to represent and solve real-	world or mathematical problems.	
18. Determine whether a value is a solution to an equation or inequality by		
using substitution to conclude whether a given value makes the equation or		
inequality true.		
 19. Write and solve an equation in the form of x+p=q or px=q for cases in which p, q, and x are all non-negative rational numbers to solve real-world and mathematical problems. a. Interpret the solution of an equation in the context of the problem. 	G2 Develop lines of inquiry (as developmentally appropriate) to understand why things are true and why	
20. Write and solve inequalities in the form of $x > c$, $x < c$, $x \ge c$, or $x \le c$ to	they are faise.	-
represent a constraint or condition in a real-world or mathematical problem. problem. a. Interpret the solution of an inequality in the context of a problem.	DS4 Exhibit joy at solving difficult mathematical problems and operations.	
problem.		
b. Represent the solutions of mequalities of a number line and explain that the solution set may contain infinitely many solutions		
Identify and analyze relationships between independent	ht and dependent variables	
21 Identify represent and analyze two quantities that change in relationship		
to one another in real-world or mathematical situations		
a lise tables graphs and equations to represent the relationship		
hetween independent and dependent variables		

Data Analysis, Statistics, and Probability		
Use real-world and mathematical problems to analyze data and demonstrate an understanding of statistical variability and		
measures of center.		
22. Write examples and non-examples of statistical questions, explaining that		
a statistical question anticipates variability in the data related to the		
question.		
23. Calculate, interpret, and compare measures of center (mean, median,		
mode) and variability (range and interquartile range) in real-world data sets.		
a. Recognize that a measure of center for a numerical data set		
summarizes all of its values with a single number, while a measure of	GS1 Demonstrate the mental habits of	
variation describes how its values vary with a single number. (DOB)	precise, determined, careful, and	
b. Determine which measure of center best represents a real-world data	accurate questioning, inquiry, and	
set.	reasoning.	
c. Interpret the measures of center and variability in the context of a		
problem.	DS3 Show interest in the pursuit of	
24. Represent numerical data graphically, using dot plots, line plots,	understanding for its own sake.	
histograms, stem and leaf plots, and box plots.		
a. Analyze the graphical representation of data by describing the center,		
spread, shape (including approximately symmetric or skewed), and		
unusual features (including gaps, peaks, clusters, and extreme values).		
b. Use graphical representations of real-world data to describe the		
context from which they were collected.		

Geometry and Measurement		
Graph polygons in the coordinate plane to solve real-world and mathematical problems.		
25. Graph polygons in the coordinate plane given coordinates of the vertices		
to solve real-world and mathematical problems.		
a. Determine missing vertices of a rectangle with the same x-coordinate		
or the same y-coordinate when graphed in the coordinate plane.		
b. Use coordinates to find the length of a side between points having the	GS4 Survey the truths about	
same x-coordinate or the same y-coordinate.	mathematical objects that are interesting	
c. Calculate perimeter and area of a polygon graphed in the coordinate	in their own right and independent of	
plane (limiting to polygons in which consecutive vertices have the	human opinions	
same x-coordinate or the same y-coordinate).		
26. Calculate the area of triangles, special quadrilaterals, and other polygons	DS1 Display a sense of wonder about	
by composing and decomposing them into known shapes.	mathematical relationships as well as	
a. Apply the techniques of composing and decomposing polygons to find	confidence in mathematical certitude	
area in the context of solving real-world and mathematical problems.		
27. Determine the surface area of three-dimensional figures by representing	DS2 Respond to the beauty harmony	
them with nets composed of rectangles and triangles to solve real-world and	proportion radiance and wholeness	
mathematical problems.	present in mathematics	
28. Apply previous understanding of volume of right rectangular prisms to		
those with fractional edge lengths to solve real-world and mathematical		
problems.		
a. Use models (cubes or drawings) and the volume formulas (V = lwh		
and V = Bh) to find and compare volumes of right rectangular prisms.		

Seventh Grade

Standard	Cardinal Newman	Date
		Taught
Number Properties and Oper	rations	
Proportional Reasoning		
Analyze proportional relationships and use them to solve real	-world and mathematical problems.	
1. Calculate unit rates of length, area, and other quantities measured in like		
or different units that include ratios or fractions.		
 2. Represent a relationship between two quantities and determine whether the two quantities are related proportionally. a. Use equivalent ratios displayed in a table or in a graph of the relationship in the coordinate plane to determine whether a relationship between two quantities is proportional. b. Identify the constant of proportionality, unit rate, and slope. Express the proportional relationship using multiple representations including tables, graphs, equations, diagrams, and verbal descriptions. c. Explain in context the meaning of a point (x,y) on the graph of a proportional relationship, with special attention to the points (0,0) and (1, r) where r is the unit rate which is also known as slope and constant of proportionality. 3. Solve multi-step percent problems in context using proportional reasoning, including simple interest, tax, gratuities, commissions, fees, markups and work of the proportional reasoning of the proportiona	GS3 Have faith in the glory and dignity of human reason as both a gift from God and a reflection of Him in whose image and likeness we are made. IS6 Evaluate the ongoing nature of mathematical inquiry, its inexhaustibility, and its openness to the infinite.	
markdowns, percent increase, and percent decrease.		

Number Systems and Operations		
Apply and extend prior knowledge of addition, subtraction, multiplication	, and division to operations with rational nun	nbers
4. Apply and extend knowledge of operations of whole numbers, fractions,		
and decimals to add, subtract, multiply, and divide rational numbers including		
integers, signed fractions, and decimals.		
a. Identify and explain situations where the sum of opposite quantities is		
0 and opposite quantities are defined as additive inverses.		
b. Explain subtraction of rational numbers as addition of additive		
inverses.		
c. Interpret the sum or difference of two or more rational numbers, by	IS7 Explain man's limitations of	
using a number line and in real-world contexts.	understanding and uncovering all	
d. Use a number line to demonstrate that the distance between two	mathematical knowledge.	
rational numbers on the number line is the absolute value of their		
difference, and apply this principle in real-world contexts.	IS8 Explain how fundamental questions	
e. Extend strategies of multiplication and division to rational numbers to	of values, common sense, and religious	
develop rules for multiplying signed numbers, showing that the	and human truths and experiences are	
properties of the operations are preserved.	beyond the scope of mathematical	
f. Divide integers and explain that division by zero is undefined.	inquiry and its syllogisms.	
Interpret the quotient of integers (with a non-zero divisor) as a		
rational number.		
g. Convert a rational number to a decimal using long division, explaining		
that the decimal form of a rational number terminates or eventually		
repeats.		
5. Solve real-world and mathematical problems involving the four operations		
of rational numbers, including complex fractions. Apply properties of		
operations as strategies where applicable.		

Algebra: Algebra and Function	ons	
Create equivalent expressions using the prop	erties of operations	
6. Apply properties of operations as strategies to add, subtract, factor, and	GS1 Demonstrate the mental habits of	
expand linear expressions with rational coefficients.	precise, determined, careful, and	
7. Generate expressions in equivalent forms based on context and explain	accurate questioning, inquiry, and	
how the quantities are related.	reasoning in the pursuit of transcendent	
	truths.	
	IS3 Demonstrate how sound logical	
	arguments and other processes of	
	mathematics are foundational to its	
	discipline.	
Solve real-world and mathematical problems using numerical and alge	praic expressions, equations, and inequalitie	es.
8. Solve multi-step real-world and mathematical problems involving rational		
numbers (integers, signed fractions and decimals), converting between forms		
as needed. Assess the reasonableness of answers using mental computation		
and estimation strategies.	DS4 Exhibit appreciation for the ongoing	
9. Use variables to represent quantities in real-world or mathematical	nature of mathematical inquiry	
problems and construct algebraic expressions, equations, and inequalities to		
solve problems by reasoning about the quantities.	DS7 Exhibit appreciation for the process	
a. Solve word problems leading to equations of the form px + q = r and	of discovering meanings and truths	
p(x + q) = r, where p, q, and r are specific rational numbers. Solve	existing within the solution of the	
equations of these forms fluently. Compare an algebraic solution to an	problem and not just arriving at an	
arithmetic solution, identifying the sequence of the operations used in	answer	
each approach.		
b. Solve word problems leading to inequalities of the form px + q > r or		
px + q < r, where p, q, and r are specific rational numbers. Graph the		
solution set of the inequality, and interpret it in the context of the		
problem.		

Data Analysis, Statistics, and Probability		
Make inferences about a population using	random sampling.	
10. Examine a sample of a population to generalize information about the	IS5 Recognize personal bias in inquiry	
population.	and articulate why inquiry should be	
a. Differentiate between a sample and a population.	undertaken in a fair and independent	
b. Compare sampling techniques to determine whether a sample is	manner.	
random and thus representative of a population, explaining that		
random sampling tends to produce representative samples and		
support valid inferences.		
c. Determine whether conclusions and generalizations can be made		
about a population based on a sample.		
d. Use data from a random sample to draw inferences about a		
population with an unknown characteristic of interest, generating		
multiple samples to gauge variation and making predictions or		
conclusions about the population.		
e. Informally explain situations in which statistical bias may exist.		
Make inferences from an informal comparison	of two populations.	
11. Informally assess the degree of visual overlap of two numerical data	GS1 Demonstrate the mental habits of	
distributions with similar variabilities, measuring the difference between the	precise, determined, careful, and	
centers by expressing it as a multiple of a measure of variability.	accurate questioning, inquiry, and	
12. Make informal comparative inferences about two populations using	reasoning in the pursuit of transcendent	
measures of center and variability and/or mean absolute deviation in context	truths	
in regards to the spread of the data.		
	IS3 Demonstrate how sound logical	
	arguments and other processes of	
	mathematics are foundational to its	
	discipline.	

Investigate probability mode	ls.	
13. Use a number from 0 to 1 to represent the probability of a chance event		
occurring, explaining that larger numbers indicate greater likelihood of the		
event occurring, while a number near zero indicates an unlikely event.		
14. Define and develop a probability model, including models that may or		
may not be uniform, where uniform models assign equal probability to all		
outcomes and non-uniform models involve events that are not equally likely.		
 Collect and use data to predict probabilities of events. 		
b. Compare probabilities from a model to observed frequencies,		
explaining possible sources of discrepancy.		
15. Approximate the probability of an event using data generated by a	DS3 Advocate for the pursuit of	
simulation (experimental probability) and compare it to the theoretical	understanding for its own sake and the	
probability.	intrinsic value or discovery of the true	
a. Observe the relative frequency of an event over the long run, using	and the beautiful often at the	
simulation or technology, and use those results to predict	requirement of great sacrifice discipline	
approximate relative frequency.	and effort	
16. Find probabilities of simple and compound events through		
experimentation or simulation and by analyzing the sample space,		
representing the probabilities as percents, decimals, or fractions.		
a. Represent sample spaces for compound events using methods such as		
organized lists, tables, and tree diagrams, and determine the		
probability of an event by finding the fraction of outcomes in the		
sample space for which the compound event occurred.		
b. Design and use a simulation to generate frequencies for compound		
events.		
c. Represent events described in everyday language in terms of		
outcomes in the sample space which composed the event.		

Geometry and Measurement		
Construct and describe geometric figures, analyzing relationships among them.		
17. Solve problems involving scale drawings of geometric figures, including computation of actual lengths and areas from a scale drawing and reproduction of a scale drawing at a different scale.	IS1 Explain the nature of rational discourse and argument and the desirability of precision and deductive	
18. Construct geometric shapes (freehand, using a ruler and a protractor, and using technology), given a written description or measurement constraints with an emphasis on constructing triangles from three measures of angles or sides, noticing when the conditions determine a unique triangle, more than one triangle, or no triangle.	certainty which mathematics makes possible and is not possible to the same degree in other disciplines. IS4 Explain how it is possible to mentally	
19. Describe the two-dimensional figures that result from slicing three- dimensional figures, as in plane sections of right rectangular prisms and right rectangular pyramids.	abstract and construct mathematical objects from direct observations of reality and how one's perception of that reality is important to what one is doing (see Appendix F). DS8 Exhibit humility at knowing that as a human being man can only grasp a portion of the truths of the universe. DS9 Advance an understanding of the ability of the human intellect to know and the desire of the will to want to know more	
Solve real-world and mathematical problems involving angle measure, circumference, area, surface area, and volume. Note: Students must select and use the appropriate unit for the attribute being measured when determining length, area, angle, time, or volume.		
20. Explain the relationships among circumference, diameter, area, and radius of a circle to demonstrate understanding of formulas for the area and circumference of a circle.	GS4 Explain how mathematics in its reflection of the good, true, and	

a. Informally derive the formula for area of a circle.	beautiful reveals qualities of being and
b. Solve area and circumference problems in real-world and	the presence of God.
mathematical situations involving circles	
21. Use facts about supplementary, complementary, vertical, and adjacent	IS2 Demonstrate how sound logical
angles in multi-step problems to write and solve simple equations for an	arguments and other processes of
unknown angle in a figure.	mathematics are foundational to its
22. Solve real-world, mathematical problems involving area, volume, and	discipline.
surface area of two- and three-dimensional objects composed of triangles,	
quadrilaterals, polygons, cubes, and right rectangular prisms.	DS2 Share with others the beauty,
	harmony, proportion, radiance, and
	wholeness present in mathematics.
	DS5 Exhibit habits of thinking
	quantitatively and in an orderly manner,
	especially through immersion in
	mathematical observations found within
	creation.
	DS6 Propose how mathematical objects
	or proofs (such as the golden mean, the
	Fibonacci numbers, the musical scale,
	and geometric proofs) suggest divine
	origin.

Eighth Grade

Standard	Cardinal Newman	Date
		Taught
Number Properties and Ope	rations	
Number Systems and Operat	ions	
Understand that the real number system is composed of	rational and irrational numbers.	
1. Define the real number system as composed of rational and irrational	GS3 Have faith in the glory and dignity of	
numbers.	human reason as both a gift from God	
a. Explain that every number has a decimal expansion; for rational	and a reflection of Him in whose image	
numbers, the decimal expansion repeats or terminates.	and likeness we are made.	
2. Locate rational approximations of irrational numbers on a number line,		
compare their sizes, and estimate the values of the irrational numbers.	IS6 Evaluate the ongoing nature of	
	mathematical inquiry, its	
	inexhaustibility, and its openness to the	
	infinite.	
	IS7 Explain man's limitations of	
	understanding and uncovering all	
	mathematical knowledge.	
	IS8 Explain how fundamental questions	
	of values, common sense, and religious	
	and human truths and experiences are	
	beyond the scope of mathematical	
	inquiry and its syllogisms.	

Algebra: Algebra and Functions		
Apply concepts of integer exponents	and radicals.	
3. Develop and apply properties of integer exponents to generate equivalent	GS2 Develop lines of inquiry to	
numerical and algebraic expressions.	understand why things are true and why	
4. Use square root and cube root symbols to represent solutions to	they are false.	
equations.		
a. Evaluate square roots of perfect squares (less than or equal to 225)	DS1 Display a sense of wonder about	
and cube roots of perfect cubes (less than or equal to 1000).	mathematical relationships, especially	
b. Explain that the square root of a non-perfect square is irrational.	mathematical certitude which is	
5. Estimate and compare very large or very small numbers in scientific	independent of human opinion.	
notation.		
6. Perform operations with numbers expressed in scientific notation,	DS4 Exhibit appreciation for the ongoing	
including problems where both decimal and scientific notation are used.	nature of mathematical inquiry.	
a. Use scientific notation and choose units of appropriate size for		
measurements of very large or very small quantities.	DS7 Exhibit appreciation for the process	
b. Interpret scientific notation that has been generated by technology.	of discovering meanings and truths	
	existing within the solution of the	
	problem and not just arriving at an	
	answer.	
Analyze the relationship between proportional and r	non-proportional situations.	
7. Determine whether a relationship between two variables is proportional or	GS2 Develop lines of inquiry to	
non-proportional.	understand why things are true and why	
8. Graph proportional relationships.	they are false.	
a. Interpret the unit rate of a proportional relationship, describing the		
constant of proportionality as the slope of the graph which goes	DS1 Display a sense of wonder about	
through the origin and has the equation y = mx where m is the slope.	mathematical relationships, especially	
9. Interpret y = mx + b as defining a linear equation whose graph is a line with	mathematical certitude which is	
m as the slope and b as the y-intercept.	independent of human opinion.	

 b. Given two distinct points in a coordinate plane, find the slope of the line containing the two points and explain why it will be the same for any two distinct points on the line. c. Graph linear relationships, interpreting the slope as the rate of change of the graph and the y-intercept as the initial value. d. Given that the slopes for two different sets of points are equal, demonstrate that the linear equations that include those two sets of points may have different y-intercepts. 10. Compare proportional and non-proportional linear relationships represented in different ways (algebraically, graphically, numerically in tables, or by verbal descriptions) to solve real-world problems. 11. Solve multi-step linear equations in one variable, including rational number coefficients, and equations in one variable have one solution, no solution, or infinitely many solutions of the form x = a, a = a, or a = b (where a and b are different numbers). a. Determine whether linear equations in one variable have one solution, no solution, or infinitely many solutions of the form x = a, a = a, or a = b (where a and b are different numbers). b. Represent and solution in the context of the problem. 12. Solve systems of two linear equations in two variables by graphing, substitution and elimination. a. Explain that the solution(s) of systems of two linear equations in two variables or responds to points of intersection on their graphs because points of intersection on their graphs because points of intersection satisfy both equations simultaneously. b. Interpret and justify the results of systems of two linear equations in two variables (one solution, no solution, or infinitely many solutions) in the context of the problem. b. Interpret and justify the results of systems of two linear equations in two variables (one solution, no solution, or infinitely many solutions) in the context of the problem. b. Interpret and justi	a. Use similar triangles to explain w	why the slope m is the same between		
 b. Given two distinct points in a coordinate plane, find the slope of the line containing the two points and explain why it will be the same for any two distinct points and explain why it will be the same for any two distinct points and explain why it will be the same for any two distinct points and explain why it will be the same for any two distinct points and explain why it will be the same for any two distinct points and explain why it will be the same for any two distinct points and explain why it will be the same for any two distinct points and explain why it will be the same for any two distinct points and explain why it will be the same for any two distinct points and explain why it will be the same for any two distinct points and explain why it will be the same for any two distinct points and explain why it will be the same for any two distinct points and explain why it will be the same for any two distinct points and explain why it will be the same for any two distinct points and explain why it will be the same for any two distinct points and explain why it will be the same for any two distinct points and explain why it will be the same for any two distinct points are equations in one variable, including rational number coefficients, and equations in one variable for ear and solve real-world and mathematical problems with equations and interpret each solution in the context of the problem. 12. Solve systems of two linear equations in two variables to prise of intersection and its by bot equations simultaneously. b. Interpret and justify the results of systems of two linear equations, or infinitely many solutions, or infinitely many solutions, when applied to real-world and mathematical problems. b. Herpret and justify the results of systems of two linear equations, in two variables (one solution, on solution, or infinitely many solutions) when applied to real-world and mathematical problems. 	any two distinct points on a non-	vertical line in a coordinate plane.	DS4 Exhibit appreciation for the ongoing	
 line containing the two points and explain why it will be the same for any two distinct points on the line. Graph linear relationships, interpreting the slope as the rate of change of the graph and the y-intercept as the initial value. Given that the slopes for two different sets of points are equal, demonstrate that the linear equations that include those two sets of points may have different y-intercepts. Compare proportional and non-proportional linear relationships represented in different ways (algebraically, graphically, numerically in tables, or by verbal descriptions) to solve real-world problems. Solve multi-step linear equations in one variable, including rational number coefficients, and equations in one variable have one solution, no solution, or infinitely many solutions of the form x = a, a = a, or a = b (where a and b are different numbers). Represent and solve real-world and mathematical problems with equations and interpret each solution in the context of the problem. Solve systems of two linear equations in one variables by graphing, substitution and elimination. Explain that the solution(s) of systems of two linear equations in two variables corresponds to points of intersection on their graphs because points of intersection on solution, or infinitely many solutions simultaneously. Interpret and justify the results of systems of two linear equations in two variables (one solution, on solution, or infinitely many solutons) in the context of the problem. Solve systems of two linear systems of two linear equations in two variables (one solution, no solution, or infinitely many solutons simultaneously. Interpret a	b. Given two distinct points in a co	ordinate plane, find the slope of the	nature of mathematical inquiry.	
any two distinct points on the line.D57 Exhibit appreciation for the process of discovering meanings and truths existing within the solution of the problem and not just arriving at an answer.0. Given that the slopes for two different sets of points are equal, demonstrate that the linear equations that include those two sets of points may have different y-intercepts.D57 Exhibit appreciation for the process of discovering meanings and truths existing within the solution of the problem and not just arriving at an answer.10. Compare proportional and non-proportional linear relationships represented in different ways (algebraically, graphically, numerically in tables, or by verbal descriptions) to solve real-world problems.Two linear equations.11. Solve multi-step linear equations in one variable, including rational number coefficients, and equations in one variable have one solution, no solution, or infinitely many solutions of the form x = a, a = a, or a = b (where a and b are different numbers).D51 Display a sense of wonder about mathematical certitude which is independent of human opinion.12. Solve systems of two linear equations in two variables corresponds to points of intersection on their graphs because points of intersection satisfy both equations simultaneously.D54 Exhibit appreciation for the process of discovering meanings and truths existing within the solution of the problem.12. Solve systems of two linear equations of intersection on their graphs because points of intersection satisfy both equations simultaneously.D54 Exhibit appreciation for the process of discovering meanings and truths existing within the solution of the problem and not just arriving at an	line containing the two points ar	nd explain why it will be the same for		
 c. Graph linear relationships, interpreting the slope as the rate of change of the graph and the y-intercept as the initial value. d. Given that the slopes for two different sets of points are equal, demonstrate that the linear equations that include those two sets of points may have different y-intercepts. 10. Compare proportional and non-proportional linear relationships represented in different ways (algebraically, graphically, numerically in tables, or by verbal descriptions) to solve real-world problems. 11. Solve multi-step linear equations in one variable, including rational number coefficients, and equations that require using the distributive property and combining like terms. a. Determine whether linear equations in one variable have one solution, no solution, or infinitely many solutions of the form x = a, a = a, a, or a = b (where a and b are different numbers). b. Represent and solve real-world and mathematical problems with equations and interpret each solution in the context of the problem. 12. Solve systems of two linear equations in two variables corresponds to points of intersection on their graphs because points of intersection satisfy both equations simultaneously. b. Interpret and justify the results of systems of two linear equations in two variables (one solution, no solution, or infinitely many solutions) in the variables (one solution, no solution, or infinitely many solutions) in the variables (one solution, no solution, or infinitely many solutions in the solution of the process of discovering meanings and truths existing within the solution of the process of discovering meanings and truths existing within the solution of the process of discovering meanings and truths existing within the solution of the process of discovering meanings and truths existing within the solution of the process of discovering meanings and truths existing within the solution of the problems. 	any two distinct points on the lir	ie.	DS7 Exhibit appreciation for the process	
 of the graph and the y-intercept as the initial value. Given that the slopes for two different sets of points are equal, demonstrate that the linear equations that include those two sets of points may have different y-intercepts. 10. Compare proportional and non-proportional linear relationships represented in different ways (algebraically, graphically, numerically in tables, or by verbal descriptions) to solve real-world problems. Analyze and solve linear equations and systems of two linear equations. 11. Solve multi-step linear equations that require using the distributive property and combining like terms. a. Determine whether linear equations in one variable have one solution, no solution, or infinitely many solutions of the form x = a, a = of (where a and b are different numbers). b. Represent and solve real-world and mathematical problems with equations and interpret each solution in the context of the problem. 12. Solve systems of two linear equations in two variables by graphing, substitution and elimination. a. Explain that the solution(s) of systems of two linear equations in two variables by graphing, because points of intersection satisfy both equations simultaneously. b. Interpret and justify the results of systems of two linear equations in two variables (one solution, no solution, or infinitely many solutions) intera equations in two variables (one solution, no solution, or infinitely many solutions in two variables (one solution, no solution, or infinitely many solutions in two variables (one solution, no solution, or infinitely many solutions in two variables by graphing, because points of intersection stify both equations simultaneously. b. Interpret and justify the results of systems of two linear equations in two variables (one solution, no solution, or infinitely many solutions) interpret equations in two variables (one solution, no solution, or infi	c. Graph linear relationships, interp	preting the slope as the rate of change	of discovering meanings and truths	
d. Given that the slopes for two different sets of points are equal, demonstrate that the linear equations that include those two sets of points may have different y-intercepts. problem and not just arriving at an answer. 10. Compare proportional and non-proportional linear relationships represented in different ways (algebraically, graphically, numerically in tables, or by verbal descriptions) to solve real-world problems. fttt between the solution of the problems. 11. Solve multi-step linear equations in one variable, including rational number coefficients, and equations that require using the distributive property and combining like terms. GS2 Develop lines of inquiry to understand why things are true and why they are false. a. Determine whether linear equations in one variable have one solution, or infinitely many solutions of the form x = a, a = a, or a = b (where a and b are different numbers). DS1 Display a sense of wonder about mathematical relationships, especially mathematical certitude which is independent of human opinion. 12. Solve systems of two linear equations in two variables by graphing, substitution and elimination. DS4 Exhibit appreciation for the ongoing nature of mathematical inquiry. b. Interpret and justify the results of systems of two linear equations in two variables (one solution, no solution, or infinitely many solutions) when applied to real-world and mathematical problems. DS7 Exhibit appreciation for the process of discovering meanings and truths existing within the solution of the problems.	of the graph and the y-intercept	as the initial value.	existing within the solution of the	
demonstrate that the linear equations that include those two sets of points may have different y-intercepts.answer.10. Compare proportional and non-proportional linear relationships represented in different ways (algebraically, graphically, numerically in tables, or by verbal descriptions) to solve real-world problems.including rational11. Solve multi-step linear equations in one variable, including rational number coefficients, and equations that require using the distributive property and combining like terms.GS2 Develop lines of inquiry to understand why things are true and why they are false.a. Determine whether linear equations in one variable have one solution, no solution, or infinitely many solutions of the form x = a, a = a, or a = b (where a and b are different numbers).DS1 Display a sense of wonder about mathematical relationships, especially mathematical certitude which is independent of human opinion.12. Solve systems of two linear equations in two variables by graphing, substitution and elimination.DS4 Exhibit appreciation for the ongoing nature of mathematical inquiry.a. Explain that the solution(s) of systems of two linear equations in weraiables (one solution, no solution, or infinitely many solutions) wen applied to real-world and mathematical problems.DS4 Exhibit appreciation for the process of discovering meanings and truths existing within the solution of the problem and not just arriving at an	d. Given that the slopes for two dif	ferent sets of points are equal,	problem and not just arriving at an	
points may have different y-intercepts.Image: construct of the problems.10. Compare proportional and non-proportional linear relationships represented in different ways (algebraically, graphically, numerically in tables, or by verbal descriptions) to solve real-world problems.Image: construct of the problems.11. Solve multi-step linear equations in one variable, including rational number coefficients, and equations that require using the distributive property and combining like terms.GS2 Develop lines of inquiry to understand why things are true and why they are false.a. Determine whether linear equations in one variable have one solution, no solution, or infinitely many solutions of the form $x = a, a =$ $a, or a = b$ (where a and b are different numbers).DS1 Display a sense of wonder about mathematical relationships, especially mathematical certitude which is independent of human opinion.12. Solve systems of two linear equations in two variables by graphing, substitution and elimination.DS4 Exhibit appreciation for the ongoing nature of mathematical inquiry.a. Explain that the solution(s) of systems of two linear equations simultaneously.DS7 Exhibit appreciation for the process of discovering meanings and truths existing within the solution of the problem and not just arriving at an	demonstrate that the linear equ	ations that include those two sets of	answer.	
10. Compare proportional and non-proportional linear relationships Image: construct of the problems. Image: construct of the problems of two linear equations. 11. Solve multi-step linear equations in one variable, including rational number coefficients, and equations that require using the distributive property and combining like terms. GS2 Develop lines of inquiry to understand why things are true and why they are false. a. Determine whether linear equations in one variable have one solution, no solution, or infinitely many solutions of the form $x = a, a = a, or a = b$ (where a and b are different numbers). DS1 Display a sense of wonder about mathematical relationships, especially mathematical certitude which is independent of human opinion. 12. Solve systems of two linear equations in two variables corresponds to points of intersection satisfy both equations simultaneously. DS4 Exhibit appreciation for the ongoing nature of mathematical inquiry. b. Interpret and justify the results of systems of two linear equations in two variables (one solution, no solution, or infinitely many solutions simultaneously. DS7 Exhibit appreciation for the process of discovering meanings and truths existing within the solution of the process of discovering meanings and truths existing within the solution of the problems.	points may have different y-inte	rcepts.		
represented in different ways (algebraically, graphically, numerically in tables, or by verbal descriptions) to solve real-world problems.Image: construct of the problem in tables, or by verbal descriptions) to solve real-world problems.11. Solve multi-step linear equations in one variable, including rational number coefficients, and equations that require using the distributive property and combining like terms.GS2 Develop lines of inquiry to understand why things are true and why they are false.a. Determine whether linear equations in one variable have one solution, no solution, or infinitely many solutions of the form $x = a, a = a$ of $a = b$ (where a and b are different numbers).DS1 Display a sense of wonder about mathematical relationships, especially mathematical certitude which is independent of human opinion.12. Solve systems of two linear equations in the context of the problem.DS4 Exhibit appreciation for the ongoing nature of mathematical inquiry.a. Explain that the solution(s) of systems of two linear equations simultaneously. b. Interpret and justify the results of systems of two linear equations in two variables (one solution, no solution, or infinitely many solutions) when applied to real-world and mathematical problems.DS7 Exhibit appreciation for the process of discovering meanings and truths existing within the solution of the problem and not just arriving at an	10. Compare proportional and non-prop	oortional linear relationships		
or by verbal descriptions) to solve real-world problems.GS2 Develop lines of inquiry to understand why things are true and why they are false.11. Solve multi-step linear equations in one variable, including rational number coefficients, and equations that require using the distributive property and combining like terms.GS2 Develop lines of inquiry to understand why things are true and why they are false.a. Determine whether linear equations in one variable have one solution, no solution, or infinitely many solutions of the form $x = a, a =$ $a, \text{ or } a = b$ (where a and b are different numbers).DS1 Display a sense of wonder about mathematical relationships, especially mathematical certitude which is independent of human opinion.12. Solve systems of two linear equations in two variables by graphing, substitution and elimination.DS4 Exhibit appreciation for the ongoing nature of mathematical inquiry.b. Interpret and justify the results of systems of two linear equations simultaneously.DS7 Exhibit appreciation for the process of discovering meanings and truths existing within the solution of the problem and not just arriving at an	represented in different ways (algebraid	ally, graphically, numerically in tables,		
Analyze and solve linear equations and systems of two linear equations.11. Solve multi-step linear equations in one variable, including rational number coefficients, and equations that require using the distributive property and combining like terms.GS2 Develop lines of inquiry to understand why things are true and why they are false.a. Determine whether linear equations in one variable have one solution, no solution, or infinitely many solutions of the form $x = a, a = a, or a = b$ (where a and b are different numbers).DS1 Display a sense of wonder about mathematical relationships, especially mathematical certitude which is independent of human opinion.12. Solve systems of two linear equations in two variables corresponds to points of intersection on their graphs because points of intersection satisfy both equations simultaneously.DS4 Exhibit appreciation for the process of discovering meanings and truths existing within the solution of the problem and not just arriving at an	or by verbal descriptions) to solve real-v	vorld problems.		
 11. Solve multi-step linear equations in one variable, including rational number coefficients, and equations that require using the distributive property and combining like terms. a. Determine whether linear equations in one variable have one solution, no solution, or infinitely many solutions of the form x = a, a = a, or a = b (where a and b are different numbers). b. Represent and solve real-world and mathematical problems with equations and interpret each solution in the context of the problem. 12. Solve systems of two linear equations in two variables by graphing, substitution and elimination. a. Explain that the solution(s) of systems of two linear equations in the solution(s) of systems of two linear equations in two variables corresponds to points of intersection on their graphs because points of intersection satisfy both equations simultaneously. b. Interpret and justify the results of systems of two linear equations in two variables (one solution, no solution, or infinitely many solutions) when applied to real-world and mathematical problems. GS2 Develop lines of inquiry to understand why things are true and why they are false. DS1 Display a sense of wonder about mathematical relationships, especially mathematical certitude which is independent of human opinion. DS4 Exhibit appreciation for the ongoing nature of mathematical inquiry. DS7 Exhibit appreciation for the process of discovering meanings and truths existing within the solution of the problems. 	Analyze a	nd solve linear equations and systems o	of two linear equations.	
number coefficients, and equations that require using the distributive property and combining like terms.understand why things are true and why they are false.a. Determine whether linear equations in one variable have one solution, no solution, or infinitely many solutions of the form $x = a, a =$ $a, or a = b$ (where a and b are different numbers).DS1 Display a sense of wonder about mathematical relationships, especially mathematical certitude which is independent of human opinion.12. Solve systems of two linear equations in two variables by graphing, substitution and elimination.DS4 Exhibit appreciation for the ongoing nature of mathematical inquiry.a. Explain that the solution(s) of systems of two linear equations simultaneously.DS7 Exhibit appreciation for the process of discovering meanings and truths existing within the solution of the mapplied to real-world and mathematical problems.DS7 Exhibit appreciation for the process of discovering meanings and truths existing within the solution of the problem and not just arriving at an	11. Solve multi-step linear equations in	one variable, including rational	GS2 Develop lines of inquiry to	
property and combining like terms.they are false.a. Determine whether linear equations in one variable have one solution, no solution, or infinitely many solutions of the form $x = a, a =$ $a, or a = b$ (where a and b are different numbers).DS1 Display a sense of wonder about mathematical relationships, especially mathematical certitude which is independent of human opinion.b. Represent and solve real-world and mathematical problems with equations and interpret each solution in the context of the problem.DS1 Display a sense of wonder about mathematical certitude which is independent of human opinion.12. Solve systems of two linear equations in two variables by graphing, substitution and elimination.DS4 Exhibit appreciation for the ongoing nature of mathematical inquiry.a. Explain that the solution(s) of systems of two linear equations in two variables corresponds to points of intersection on their graphs because points of intersection satisfy both equations simultaneously.DS7 Exhibit appreciation for the process of discovering meanings and truths existing within the solution of the problem and not just arriving at an	number coefficients, and equations that	require using the distributive	understand why things are true and why	
 a. Determine whether linear equations in one variable have one solution, no solution, or infinitely many solutions of the form x = a, a = a, or a = b (where a and b are different numbers). b. Represent and solve real-world and mathematical problems with equations and interpret each solution in the context of the problem. 12. Solve systems of two linear equations in two variables by graphing, substitution and elimination. a. Explain that the solution(s) of systems of two linear equations in two variables corresponds to points of intersection on their graphs because points of intersection satisfy both equations simultaneously. b. Interpret and justify the results of systems of two linear equations in two variables (one solution, no solution, or infinitely many solutions) when applied to real-world and mathematical problems. 	property and combining like terms.		they are false.	
 solution, no solution, or infinitely many solutions of the form x = a, a = a, or a = b (where a and b are different numbers). Bepresent and solve real-world and mathematical problems with equations and interpret each solution in the context of the problem. Solve systems of two linear equations in two variables by graphing, substitution and elimination. Explain that the solution(s) of systems of two linear equations simultaneously. Interpret and justify the results of systems of two linear equations in two variables (one solution, no solution, or infinitely many solutions) when applied to real-world and mathematical problems. 	a. Determine whether linear equat	ions in one variable have one		
a, or a = b (where a and b are different numbers).mathematical relationships, especially mathematical certitude which is independent of human opinion.12. Solve systems of two linear equations in two variables by graphing, substitution and elimination.DS4 Exhibit appreciation for the ongoing nature of mathematical inquiry.a. Explain that the solution(s) of systems of two linear equations of intersection on their graphs because points of intersection satisfy both equations simultaneously.DS7 Exhibit appreciation for the process of discovering meanings and truthsb. Interpret and justify the results of systems of two linear equations in two variables (one solution, no solution, or infinitely many solutions) when applied to real-world and mathematical problems.DS7 Exhibit appreciation of the problem and not just arriving at an	solution, no solution, or infinitely	y many solutions of the form x = a, a =	DS1 Display a sense of wonder about	
b.Represent and solve real-world and mathematical problems with equations and interpret each solution in the context of the problem.mathematical certitude which is independent of human opinion.12. Solve systems of two linear equations in two variables by graphing, substitution and elimination.DS4 Exhibit appreciation for the ongoing nature of mathematical inquiry.a.Explain that the solution(s) of systems of two linear equations in two variables corresponds to points of intersection on their graphs because points of intersection satisfy both equations simultaneously.DS7 Exhibit appreciation for the process of discovering meanings and truths existing within the solution of the problem and not just arriving at an	a, or a = b (where a and b are dif	ferent numbers).	mathematical relationships, especially	
equations and interpret each solution in the context of the problem.independent of human opinion.12. Solve systems of two linear equations in two variables by graphing, substitution and elimination.DS4 Exhibit appreciation for the ongoing nature of mathematical inquiry.a. Explain that the solution(s) of systems of two linear equations in two variables corresponds to points of intersection on their graphs because points of intersection satisfy both equations simultaneously.DS7 Exhibit appreciation for the process of discovering meanings and truths existing within the solution of the problem and not just arriving at an	b. Represent and solve real-world a	and mathematical problems with	mathematical certitude which is	
 12. Solve systems of two linear equations in two variables by graphing, substitution and elimination. a. Explain that the solution(s) of systems of two linear equations in two variables corresponds to points of intersection on their graphs because points of intersection satisfy both equations simultaneously. b. Interpret and justify the results of systems of two linear equations in two variables (one solution, no solution, or infinitely many solutions) when applied to real-world and mathematical problems. 	equations and interpret each sol	ution in the context of the problem.	independent of human opinion.	
 substitution and elimination. a. Explain that the solution(s) of systems of two linear equations in two variables corresponds to points of intersection on their graphs because points of intersection satisfy both equations simultaneously. b. Interpret and justify the results of systems of two linear equations in two variables (one solution, no solution, or infinitely many solutions) when applied to real-world and mathematical problems. DS4 Exhibit appreciation for the ongoing nature of mathematical inquiry. DS7 Exhibit appreciation for the process of discovering meanings and truths existing within the solution of the problem and not just arriving at an 	12. Solve systems of two linear equation	ns in two variables by graphing,		
 a. Explain that the solution(s) of systems of two linear equations in two variables corresponds to points of intersection on their graphs because points of intersection satisfy both equations simultaneously. b. Interpret and justify the results of systems of two linear equations in two variables (one solution, no solution, or infinitely many solutions) when applied to real-world and mathematical problems. nature of mathematical inquiry. nature of mathematical inquiry. DS7 Exhibit appreciation for the process of discovering meanings and truths existing within the solution of the problem and not just arriving at an 	substitution and elimination.		DS4 Exhibit appreciation for the ongoing	
 variables corresponds to points of intersection on their graphs because points of intersection satisfy both equations simultaneously. b. Interpret and justify the results of systems of two linear equations in two variables (one solution, no solution, or infinitely many solutions) when applied to real-world and mathematical problems. DS7 Exhibit appreciation for the process of discovering meanings and truths existing within the solution of the problem and not just arriving at an 	a. Explain that the solution(s) of sys	stems of two linear equations in two	nature of mathematical inquiry.	
 because points of intersection satisfy both equations simultaneously. b. Interpret and justify the results of systems of two linear equations in two variables (one solution, no solution, or infinitely many solutions) when applied to real-world and mathematical problems. DS7 Exhibit appreciation for the process of discovering meanings and truths existing within the solution of the problem and not just arriving at an 	variables corresponds to points of	of intersection on their graphs		
 b. Interpret and justify the results of systems of two linear equations in two variables (one solution, no solution, or infinitely many solutions) when applied to real-world and mathematical problems. of discovering meanings and truths existing within the solution of the problem and not just arriving at an 	because points of intersection sa	tisfy both equations simultaneously.	DS7 Exhibit appreciation for the process	
two variables (one solution, no solution, or infinitely many solutions)existing within the solution of thewhen applied to real-world and mathematical problems.problem and not just arriving at an	b. Interpret and justify the results of	of systems of two linear equations in	of discovering meanings and truths	
when applied to real-world and mathematical problems. problem and not just arriving at an	two variables (one solution, no s	olution, or infinitely many solutions)	existing within the solution of the	
	when applied to real-world and	mathematical problems.	problem and not just arriving at an	
answer.		•	answer.	

Explain, evaluate, and compare functions.		
13. Determine whether a relation is a function, defining a function as a rule	GS2 Develop lines of inquiry to	
that assigns to each input (independent value) exactly one output (dependent	understand why things are true and why	
value), and given a graph, table, mapping, or set of ordered pairs.	they are false.	
14. Evaluate functions defined by a rule or an equation, given values for the		
independent variable.	DS1 Display a sense of wonder about	
15. Compare properties of functions represented algebraically, graphically,	mathematical relationships, especially	
numerically in tables, or by verbal descriptions.	mathematical certitude which is	
a. Distinguish between linear and non-linear functions.	independent of human opinion.	
Use functions to model relationships betw	ween quantities.	
16. Construct a function to model a linear relationship between two variables.	DS4 Exhibit appreciation for the ongoing	
a. Interpret the rate of change (slope) and initial value of the linear	nature of mathematical inquiry.	
function from a description of a relationship or from two points in a		
table or graph.	DS7 Exhibit appreciation for the process	
17. Analyze the relationship (increasing or decreasing, linear or non-linear)	of discovering meanings and truths	
between two quantities represented in a graph.	existing within the solution of the	
	problem and not just arriving at an	
	answer.	

Data Analysis, Statistics, and Probability		
Investigate patterns of association in b	vivariate data.	
18. Construct and interpret scatter plots for bivariate measurement data to	GS1 Demonstrate the mental habits of	
investigate patterns of association between two quantities, describing	precise, determined, careful, and	
patterns in terms of positive, negative, or no association, linear and non-	accurate questioning, inquiry, and	
linear association, clustering, and outliers.	reasoning in the pursuit of transcendent	
19. Given a scatter plot that suggests a linear association, informally draw a	truths.	
line to fit the data, and assess the model fit by judging the closeness of the		
data points to the line.	IS3 Demonstrate how sound logical	
20. Use a linear model of a real-world situation to solve problems and make	arguments and other processes of	
predictions.	mathematics are foundational to its	
a. Describe the rate of change and y-intercept in the context of a	discipline.	
problem using a linear model of a real-world situation.		
21. Construct and interpret a two-way table summarizing data on two	IS5 Recognize personal bias in inquiry	
categorical variables collected from the same subjects, using relative	and articulate why inquiry should be	
frequencies calculated for rows or columns to describe possible associations	undertaken in a fair and independent	
between the two variables.	manner.	
	DS3 Advocate for the pursuit of	
	understanding for its own sake and the	
	intrinsic value or discovery of the true	
	and the beautiful often at the	
	requirement of great sacrifice, discipline,	
	and effort.	

Geometry and Measurement	
Understand congruence and similarity using physical models or technology.	
 22. Verify experimentally the properties of rigid motions (rotations, reflections, and translations): lines are taken to lines, and line segments are taken to line segments of the same length; angles are taken to angles of the same measure; and parallel lines are taken to parallel lines. a. Given a pair of two-dimensional figures, determine if a series of rigid motions maps one figure onto the other, recognizing that if such a sequence exists the figures are congruent; describe the transformation sequence that verifies a congruence relationship. 	IS1 Explain the nature of rational discourse and argument and the desirability of precision and deductive certainty which mathematics makes possible and is not possible to the same degree in other disciplines.
23. Use coordinates to describe the effect of transformations (dilations, translations, rotations, and reflections) on two-dimensional figures.	abstract and construct mathematical objects from direct observations of
24. Given a pair of two-dimensional figures, determine if a series of dilations and rigid motions maps one figure onto the other, recognizing that if such a sequence exists the figures are similar; describe the transformation sequence that exhibits the similarity between them.	reality and how one's perception of that reality is important to what one is doing (see Appendix F). DS8 Exhibit humility at knowing that as a human being man can only grasp a portion of the truths of the universe. DS9 Advance an understanding of the ability of the human intellect to know and the desire of the will to want to know more
Analyze parallel lines cut by a tran	nsversal.
 25. Analyze and apply properties of parallel lines cut by a transversal to determine missing angle measures. a. Use informal arguments to establish that the sum of the interior angles of a triangle is 180 degrees. 	GS4 Explain how mathematics in its reflection of the good, true, and beautiful reveals qualities of being and the presence of God.

Understand and apply the Pythagorea	an Theorem.	
26. Informally justify the Pythagorean Theorem and its converse.	IS2 Demonstrate how sound logical	
27. Apply the Pythagorean Theorem to find the distance between two points	arguments and other processes of	
in a coordinate plane.	mathematics are foundational to its	
28. Apply the Pythagorean Theorem to determine unknown side lengths of	discipline.	
right triangles, including real-world applications		
	DS2 Share with others the beauty,	
	harmony, proportion, radiance, and	
	wholeness present in mathematics.	
Solve real-world and mathematical problems involving volun	ne of cylinders, cones, and spheres.	
Note: Students must select and use the appropriate unit for the attribute bein	ng measured when determining length, area,	, angle,
time, or volume.	· · · · · · · · · · · · · · · · · · ·	
29. Informally derive the formulas for the volume of cones and spheres by	DS5 Exhibit habits of thinking	
experimentally comparing the volumes of cones and spheres with the same	quantitatively and in an orderly manner,	
radius and height to a cylinder with the same dimensions.	especially through immersion in	
30. Use formulas to calculate the volumes of three-dimensional figures	mathematical observations found within	
(cylinders, cones, and spheres) to solve real-world problems.	creation.	
	DS6 Propose how mathematical objects	
	or proofs (such as the golden mean, the	
	Fibonacci numbers, the musical scale,	
	and geometric proofs) suggest divine	
	origin.	

Standard	Cardinal Newman	Date
		Taught
Number Properties and Operation	ons (NAEP)	
Proportional Reasoning		
Analyze proportional relationships and use them to solve real-worl	d problems and mathematical problems.	
1. Calculate unit rates of length, area, and other quantities measured in like	GS3 Have faith in the glory and dignity of	
or different units that include ratios or fractions. [Grade 7, 1]	human reason as both a gift from God	
2. Represent a relationship between two quantities and determine whether	and a reflection of Him in whose image	
the two quantities are related proportionally.	and likeness we are made.	
a. Use equivalent ratios displayed in a table or in a graph of the		
relationship in the coordinate plane to determine whether a	IS6 Evaluate the ongoing nature of	
relationship between two quantities is proportional.	mathematical inquiry, its	
b. Identify the constant of proportionality (unit rate) and express the	inexhaustibility, and its openness to the	
proportional relationship using multiple representations including	infinite.	
tables, graphs, equations, diagrams, and verbal descriptions of		
proportional relationships.	IS7 Explain man's limitations of	
c. Explain in context the meaning of a point (x,y) on the graph of a	understanding and uncovering all	
proportional relationship, with special attention to the points (0,0)	mathematical knowledge.	
and (1, r) where r is the unit rate. [Grade 7, 2]		
3. Solve multi-step percent problems in context using proportional reasoning,	IS8 Explain how fundamental questions	
including simple interest, tax, gratuities, commissions, fees, markups and	of values, common sense, and religious	
markdowns, percent increase, and percent decrease. [Grade 7, 3]	and human truths and experiences are	
	beyond the scope of mathematical	
	inquiry and its syllogisms.	

Analyze the relationship between proportional and non-proportional situations.	
4. Determine whether a relationship between two variables is proportional or	
non-proportional. [Grade 8, 7]	GS3 Have faith in the glory and dignity of
5. Graph proportional relationships.	human reason as both a gift from God
a. Interpret the unit rate of a proportional relationship, describing the	and a reflection of Him in whose image
constant of proportionality as the slope of the graph which goes	and likeness we are made.
through the origin and has the equation y = mx where m is the slope.	
[Grade 8, 8]	IS6 Evaluate the ongoing nature of
6. Interpret y = mx + b as defining a linear equation whose graph is a line with	mathematical inquiry, its
m as the slope and b as the y-intercept.	inexhaustibility, and its openness to the
a. Use similar triangles to explain why the slope m is the same between	infinite.
any two distinct points on a non-vertical line in a coordinate plane.	
b. Given two distinct points in a coordinate plane, find the slope of the	IS7 Explain man's limitations of
line containing the two points and explain why it will be the same for	understanding and uncovering all
any two distinct points on the line.	mathematical knowledge.
c. Graph linear relationships, interpreting the slope as the rate of change	
of the graph and the y-intercept as the initial value.	IS8 Explain how fundamental questions
d. Given that the slopes for two different sets of points are equal,	of values, common sense, and religious
demonstrate that the linear equations that include those two sets of	and human truths and experiences are
points may have different y-intercepts. [Grade 8, 9]	beyond the scope of mathematical
7. Compare proportional and non-proportional linear relationships	inquiry and its syllogisms.
represented in different ways (algebraically, graphically, numerically in tables,	
or by verbal descriptions) to solve real-world problems. [Grade 8, 10]	
Number Systems and Operat	ions
Apply and extend prior knowledge of addition, subtraction, multiplication,	and division to operations with rational numbers.
8. Apply and extend knowledge of operations of whole numbers, fractions,	GS3 Have faith in the glory and dignity of
and decimals to add, subtract, multiply, and divide rational numbers including	human reason as both a gift from God
integers, signed fractions, and decimals.	and a reflection of Him in whose image
a. Identify and explain situations where the sum of opposite quantities is	and likeness we are made.
0 and opposite quantities are defined as additive inverses.	

b.	Interpret the sum of two or more rational numbers, by using a	IS6 Evaluate the ongoing nature of	
	number line and in real-world contexts.	mathematical inquiry, its	
с.	Explain subtraction of rational numbers as addition of additive	inexhaustibility, and its openness to the	
	inverses.	infinite.	
d.	Use a number line to demonstrate that the distance between two		
	rational numbers on the number line is the absolute value of their	IS7 Explain man's limitations of	
	difference, and apply this principle in real-world contexts.	understanding and uncovering all	
e.	Extend strategies of multiplication to rational numbers to develop	mathematical knowledge.	
	rules for multiplying signed numbers, showing that the properties of		
	the operations are preserved.	IS8 Explain how fundamental questions	
f.	Divide integers and explain that division by zero is undefined.	of values, common sense, and religious	
	Interpret the quotient of integers (with a non-zero divisor) as a	and human truths and experiences are	
	rational number.	beyond the scope of mathematical	
g.	Convert a rational number to a decimal using long division, explaining	inquiry and its syllogisms.	
	that the decimal form of a rational number terminates or eventually		
	repeats. [Grade 7, 4]		
9. Solv	e real-world and mathematical problems involving the four operations		
of rati	onal numbers, including complex fractions. Apply properties of		
operat	ions as strategies where applicable. [Grade 7, 5]		
	Understand that the real number system is composed of	rational and irrational numbers.	
10. De	fine the real number system as composed of rational and irrational		
numbe	ers.		
a.	Explain that every number has a decimal expansion; for rational		
	numbers, the decimal expansion repeats in a pattern or terminates.		
b.	Convert a decimal expansion that repeats in a pattern into a rational		
	number. [Grade 8, 1]		
11. Lo	cate rational approximations of irrational numbers on a number line,		
compa	re their sizes, and estimate the values of irrational numbers. [Grade 8,		
2]			

Algebra		
Algebra and Functions		
Create equivalent expressions using the prop	erties of operations.	
12. Apply properties of operations as strategies to add, subtract, factor, and		
expand linear expressions with rational coefficients. [Grade 7, 6]		
13. Generate expressions in equivalent forms based on context and explain		
how the quantities are related. [Grade 7, 7]		
Apply concepts of rational and intege	r exponents	1
14. Develop and apply properties of integer exponents to generate equivalent	GS2 Develop lines of inquiry to	
numerical and algebraic expressions. [Grade 8, 3]	understand why things are true and why	
15. Use square root and cube root symbols to represent solutions to	they are false.	
equations.		
a. Evaluate square roots of perfect squares (less than or equal to 225)	DS1 Display a sense of wonder about	
and cube roots of perfect cubes (less than or equal to 1000).	mathematical relationships, especially	
b. Explain that the square root of a non-perfect square is irrational.	mathematical certitude which is	
[Grade 8, 4]	independent of human opinion.	
16. Express and compare very large or very small numbers in scientific		
notation. [Grade 8, 5]	DS4 Exhibit appreciation for the ongoing	
a. Perform operations with numbers expressed in scientific notation,	nature of mathematical inquiry.	
including problems where both decimal and scientific notation are		
used, expressing answers in scientific notation. [Grade 8, 6]	DS7 Exhibit appreciation for the process	
b. Use scientific notation and choose units of appropriate size for	of discovering meanings and truths	
measurements of very large or very small quantities. [Grade 8, 6a]	existing within the solution of the	
c. Interpret scientific notation that has been generated by technology.	problem and not just arriving at an	
[Grade 8, 6b]	answer.	
Solve real-world and mathematical problems using numerical and algel	praic expressions, equations, and inequalitie	es.
17. Solve multi-step real-world and mathematical problems involving rational	GS2 Develop lines of inquiry to	
numbers (integers, signed fractions, and decimals), converting between forms	understand why things are true and why	
as needed. Assess the reasonableness of answers using mental computation	they are false.	
and estimation strategies. [Grade 7, 8]		

18. Use variables to represent quantities in a real-world or mathematical	DS1 Display a sense of wonder about	
problem and construct algebraic expressions, equations, and inequalities to	mathematical relationships, especially	
solve problems by reasoning about the quantities.	mathematical certitude which is	
a. Solve word problems leading to equations of the form px + q = r and	independent of human opinion.	
p(x + q) = r, where p, q, and r are specific rational numbers. Solve		
equations of these forms fluently. Compare an algebraic solution to an	DS4 Exhibit appreciation for the ongoing	
arithmetic solution, identifying the sequence of the operations used in	nature of mathematical inquiry.	
each approach.		
b. Solve word problems leading to inequalities of the form px + q > r or	DS7 Exhibit appreciation for the process	
px + q < r, where p, q, and r are specific rational numbers. Graph the	of discovering meanings and truths	
solution set of the inequality and interpret it in the context of the	existing within the solution of the	
problem. [Grade 7, 9, and linear portion of Algebra I with Probability,	problem and not just arriving at an	
11]	answer.	
19. Create equations in two variables to represent relationships between		
quantities in context; graph equations on coordinate axes with labels and		
scales and use them to make predictions. Limit to contexts arising from linear		
functions. [Algebra I with Probability, 12 partial]		
20. Represent constraints by equations and/or inequalities, and interpret		
solutions as viable or nonviable options in a modeling context. Limit to		
contexts arising from linear. [Algebra I with Probability, 13 partial]		
21. Solve multi-step linear equations in one variable, including rational		
number coefficients, and equations that require using the distributive		
property and combining like terms.		
a. Determine whether linear equations in one variable have one		
solution, no solution, or infinitely many solutions of the form x = a, a =		
a, or a = b (where a and b are different numbers).		
b. Represent and solve real-world and mathematical problems with		
equations and interpret each solution in the context of the problem.		
[Grade 8, 11]		

Explain, evaluate, and compare functions.	
22. Identify the effect on the graph of replacing f (x) by f (x) + k, $k \cdot f(x)$, f (kx),	GS2 Develop lines of inquiry to
and $f(x + k)$ for specific values of k (both positive and negative); find the value	understand why things are true and why
of k given the graphs. Experiment with cases and explain the effects on the	they are false.
graph using technology, where appropriate. Limit to linear functions. [Algebra	
I with Probability, 23]	DS1 Display a sense of wonder about
23. Construct a function to model the linear relationship between two	mathematical relationships, especially
variables. a. Interpret the rate of change (slope) and initial value of the linear	mathematical certitude which is
function from a description of a relationship from two points in a table or	independent of human opinion.
graph. [Grade 8, 16]	
24. Explain why the x-coordinates of the points where the graphs of the	DS4 Exhibit appreciation for the ongoing
equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) =$	nature of mathematical inquiry.
g(x). Limit to linear equations. [Algebra I with Probability, 19]	
25. Find approximate solutions by graphing the functions, making tables of	DS7 Exhibit appreciation for the process
values, or finding successive approximations, using technology where	of discovering meanings and truths
appropriate. Note: Include cases where f(x) is linear and g(x) is constant or	existing within the solution of the
linear. [Algebra I with Probability, 19 edited]	problem and not just arriving at an
	answer.
Data Analysis, Statistics, and Proba	ability (NAEP)
Data Analysis, Statistics and Pro	bability
Make inferences about a population using	random sampling.
26. Examine a sample of a population to generalize information about the	
population.	GS1 Demonstrate the mental babits of
a. Differentiate between a sample and a population.	procise determined careful and
b. Compare sampling techniques to determine whether a sample is	accurate questioning inquiry and
random and thus representative of a population, explaining that	rosconing in the pursuit of transcondent
random sampling tends to produce representative samples and	truthe
support valid inferences.	
c. Determine whether conclusions and generalizations can be made	
about a population based on a sample.	

d. Use data from a random sample to draw inferences about a		
population with an unknown characteristic of interest, generating		
multiple samples to gauge variation and make predictions or		
conclusions about the population.		
e. Informally explain situations in which statistical bias may exist. [Grade		
7, 10]		
Make inferences from an informal compariso	n of two populations.	
27. Informally assess the degree of visual overlap of two numerical data	IS2 Demonstrate how sound logical	
distributions with similar variabilities, measuring the difference between the	IS3 Demonstrate now sound logical	
centers by expressing it as a multiple of a measure of variability. [Grade 7, 11]	arguments and other processes of	
28. Make informal comparative inferences about two populations using	- mathematics are foundational to its	
measures of center and variability and/or mean absolute deviation in context.	discipline.	
[Grade 7, 12]		
Investigate probability mod	els.	
29. Use a number between 0 and 1 to represent the probability of a chance		
event occurring, explaining that larger numbers indicate greater likelihood of		
the event occurring, while a number near zero indicates an unlikely event.		
[Grade 7, 13]	ISS Recognize personal bias in inquiry	
30. Define and develop a probability model, including models that may or	- and articulate why inquiry should be	
may not be uniform, where uniform models assign equal probability to all	undertaken in a fair and independent	
outcomes and non-uniform models involve events that are not equally likely.	manner.	
a. Collect and use data to predict probabilities of events.		
b. Compare probabilities from a model to observe frequencies,	DS3 Advocate for the pursuit of	
explaining possible sources of discrepancy. [Grade 7, 14]	understanding for its own sake and the	
31. Approximate the probability of an event by using data generated by a	- Intrinsic value or discovery of the true	
simulation (experimental probability) and compare it to theoretical	and the beautiful often at the	
probability.	requirement of great sacrifice, discipline,	
a. Observe the relative frequency of an event over the long run, using	and errort.	
simulation or technology, and use those results to predict		
approximate relative frequency. [Grade 7, 15]		

32. Find probabilities of simple and compound events through		
experimentation or simulation and by analyzing the sample space,		
representing the probabilities as percents, decimals, or fractions.		
a. Represent sample spaces for compound events using methods such as		
organized lists, tables, and tree diagrams, and determine the		
probability of an event by finding the fraction of outcomes in the		
sample space for which the compound event occurred.		
b. Design and use a simulation to generate frequencies for compound		
events.		
c. Represent events described in everyday language in terms of		
outcomes in the sample space which composed the event. [Grade 7,		
16]		
Geometry and Measurem	nent	
Construct and describe geometrical figures, analyzing	g relationships among them.	
33. Solve problems involving scale drawings of geometric figures including	GS4 Explain how mathematics in its	
computation of actual lengths and areas from a scale drawing and	reflection of the good, true, and	
reproduction of a scale drawing at a different scale. [Grade 7, 17]	beautiful reveals qualities of being and	
34. Construct geometric shapes (freehand, using a ruler and a protractor, and	the presence of God.	
using technology) given measurement constraints with an emphasis on		
constructing triangles from three measures of angles or sides, noticing when	IS2 Demonstrate how sound logical	
the conditions determine a unique triangle, more than one triangle, or no	arguments and other processes of	
triangle. [Grade 7, 18]	mathematics are foundational to its	
35. Describe the two-dimensional figures created by slicing three-dimensional	discipline.	
figures into plane sections. [Grade 7, 19]		
	DS2 Share with others the beauty,	
	harmony, proportion, radiance, and	
	wholeness present in mathematics.	
	DS5 Exhibit habits of thinking	
	quantitatively and in an orderly manner,	
	especially through immersion in	

	mathematical observations found within creation. DS6 Propose how mathematical objects or proofs (such as the golden mean, the Fibonacci numbers, the musical scale, and geometric proofs) suggest divine origin.
Solve real-world and mathematical problems involving angle me	easure, area, surface area, and volume.
 36. Explain the relationships among circumference, diameter, area, and radius of a circle to demonstrate understanding of formulas for the area and circumference of a circle. a. Informally derive the formula for area of a circle. b. Solve area and circumference problems in real-world and mathematical situations involving circles. [Grade 7, 20] 37. Use facts about supplementary, complementary, vertical, and adjacent angles in multi-step problems to write and solve simple equations for an unknown angle in a figure. [Grade 7, 21] 38. Analyze and apply properties of parallel lines cut by a transversal to determine missing angle measures. a. Use informal arguments to establish that the sum of the interior angles of a triangle is 180 degrees. [Grade 8, 25] 	GS4 Explain how mathematics in its reflection of the good, true, and beautiful reveals qualities of being and the presence of God.IS2 Demonstrate how sound logical arguments and other processes of mathematics are foundational to its discipline.DS2 Share with others the beauty, harmony, proportion, radiance, and wheleness present in mathematics
39. Solve real-world and mathematical problems involving area, volume, and surface area of two- and threedimensional objects composed of triangles, quadrilaterals, polygons, cubes, and right rectangular prisms. [Grade 7, 22]	DS5 Exhibit habits of thinking
 40. Informally derive the formulas for the volume of cones and spheres by experimentally comparing the volumes of cones and spheres with the same radius and height to a cylinder with the same dimensions. [Grade 8, 29] 41. Use formulas to calculate the volumes of three-dimensional figures to solve real-world problems. [Grade 8, 30] 	especially through immersion in mathematical observations found within creation.

	DS6 Propose how mathematical objects or proofs (such as the golden mean, the Fibonacci numbers, the musical scale, and geometric proofs) suggest divine origin.		
Understand congruence and similarity using physic	cal models or technology.		
42. Verify experimentally the properties of rigid motions (rotations,			
reflections, and translations): lines are taken to lines, and line segments are			
taken to line segments of the same length; angles are taken to angles of the			
same measure; and parallel lines are taken to parallel lines.			
a. Given a pair of two-dimensional figures, determine if a series of rigid			
motions maps one figure onto the other, recognizing that if such a			
sequence exists the figures are congruent; describe the			
transformation sequence that verifies a congruence relationship.			
[Grade 8, 22]			
43. Use coordinates to describe the effect of transformations (dilations,			
translations, rotations, and reflections) on two-dimensional figures. [Grade 8,			
23]			
44. Given a pair of two-dimensional figures, determine if a series of dilations			
and rigid motions maps one figure onto the other, recognizing that if such a			
sequence exists the figures are similar; describe the transformation sequence			
that exhibits the similarity between them. [Grade 8, 24]			
Standard	Cardinal Newman	Date	
---	--	------------	--
		Taught	
Number Properties and Operation	ons (NAEP)		
Number Systems and Operat	ions		
Together, irrational numbers and rational numbers complete the real number	r system, representing all points on the nu	mber line,	
while there exist numbers beyond the real numbers	s called complex numbers.		
1. Explain how the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for an additional notation for radicals in terms of rational exponents. [Algebra I with Probability, 1]	IS6 Evaluate the ongoing nature of mathematical inquiry, its inexhaustibility, and its openness to		
2. Rewrite expressions involving radicals and rational exponents using the properties of exponents. [Algebra I with Probability, 2]	the minite.		
3. Define the imaginary number <i>i</i> such that $i^2 = -1$. [Algebra I with Probability,	IS7 Explain man's limitations of		
3]	understanding and uncovering all mathematical knowledge.		
Algebra		1	
Algebra and Functions			
Expressions can be rewritten in equivalent forms by using algebraic properties, including properties of addition, multiplication, and exponentiation, to make different characteristics or features visible.			
4. Interpret linear, quadratic, and exponential expressions in terms of a	IS1 Explain the nature of rational		
context by viewing one or more of their parts as a single entity. [Algebra I	discourse and argument and the		
with Probability, 4]	desirability of precision and deductive		
Example: Interpret the accrued amount of investment $P(1 + r)t$, where P is	certainty which mathematics makes		
the principal and r is the interest rate, as the product of P and a factor	possible and is not possible to the		
depending on time <i>t</i> .	same degree in other disciplines.		

	DS7 Exhibit appreciation for the process of discovering meanings and truths existing within the solution of the problem and not just arriving at an answer.
 5. Use the structure of an expression to identify ways to rewrite it. [Algebra I with Probability, 5] Example: See x⁴ - y⁴ as (x²)² - (y²)², thus recognizing it as a difference of squares that can be factored as (x² - y²)(x² + y²). 6. Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression. [Algebra I with Probability, 6] a. Factor quadratic expressions with leading coefficients of one, and use the factored form to reveal the zeros of the function it defines. b. Use the vertex form of a quadratic expression to reveal the maximum or minimum value and the axis of symmetry of the function it defines; complete the square to find the vertex form of quadratics with a leading coefficient of one. c. Use the properties of exponents to transform expressions for exponential functions. Example: Identify percent rate of change in functions such as y = (1.02)^t, y = (0.97)^t, y = (1.01)^{12t}, or y = (1.2)^{t/10}, and classify them as representing exponential growth or decay. 	DS1 Display a sense of wonder about mathematical relationships, especially mathematical certitude which is independent of human opinion.
7. Add, subtract, and multiply polynomials, showing that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication. [Algebra I with Probability, 7]	DS7 Exhibit appreciation for the process of discovering meanings and truths existing within the solution of the problem and not just arriving at an answer.
8. Analyze the relationship (increasing or decreasing, linear or non-linear) between two quantities represented in a graph. [Grade 8, 17]	DS5 Exhibit habits of thinking quantitatively and in an orderly manner, especially through immersion

	in mathematical observations found	
	within creation.	
Analyze and solve linear equations and systems of	of two linear equations.	1
9. Solve systems of two linear equations in two variables by graphing and	GS1 Demonstrate the mental habits of	
substitution.	precise, determined, careful, and	
a. Explain that the solution(s) of systems of two linear equations in two	accurate questioning, inquiry, and	
variables corresponds to points of intersection on their graphs	reasoning in the pursuit of	
because points of intersection satisfy both equations simultaneously.	transcendent truths.	
b. Interpret and justify the results of systems of two linear equations in		
two variables (one solution, no solution, or infinitely many solutions)		
when applied to real-world and mathematical problems. [Grade 8, 12]		
Finding solutions to an equation, inequality, or system of equations or inequ	alities requires the checking of candidate	solutions,
whether generated analytically or graphically, to ensure that solutions are	found and that those found are not extra	ineous.
10. Explain why extraneous solutions to an equation involving absolute values	GS1 Demonstrate the mental habits of	
may arise and how to check to be sure that a candidate solution satisfies an	precise, determined, careful, and	
equation. [Algebra I with Probability, 8]	accurate questioning, inquiry, and	
	reasoning in the pursuit of	
	transcendent truths.	
The structure of an equation or inequality (including, but not limited to, one-	variable linear and guadratic equations, in	equalities,
and systems of linear equations in two variables) can be purposefully analyz	ed (with and without technology) to dete	rmine an
efficient strategy to find a solution, if one exists, and	then to justify the solution.	
11. Select an appropriate method to solve a guadratic equation in one		
variable.		
a Use the method of completing the square to transform any quadratic		
equation in x into an equation of the form $(x - n)^2 = n$ that has the	GS2 Develop lines of inquiry to	
same solutions. Explain how the quadratic formula is derived from this	understand why things are true and	
form	why they are false	
b. Solve an advatic equations by inspection (such as $y^2 = 40$) taking		
b. Solve quadratic equations by inspection (such as $x = 49$), taking		
square roots, completing the square, the quadratic formula, and		
factoring, as appropriate to the initial form of the equation, and		

recognize that some solutions may not be real. [Algebra I with Probability, 9]			
 Probability, 9] 12. Select an appropriate method to solve a system of two linear equations in two variables. a. Solve a system of two equations in two variables by using linear combinations; contrast situations in which use of linear combinations is more efficient with those in which substitution is more efficient. b. Contrast solutions to a system of two linear equations in two variables produced by algebraic methods with graphical and tabular methods. [Algebra I with Probability, 10] 	DS1 Display a sense of wonder about mathematical relationships, especially mathematical certitude which is independent of human opinion.		
Expressions, equations, and inequalities can be used to analyze and make pred is applied in different contexts – in particular, contexts that arise in relation	ictions, both within mathematics and as n n to linear, quadratic, and exponential situ	nathematics Jations.	
 13. Create equations and inequalities in one variable and use them to solve problems in context, either exactly or approximately. Extend from contexts arising from linear functions to those involving quadratic, exponential, and absolute value functions. [Algebra I with Probability, 11] 14. Create equations in two or more variables to represent relationships between quantities in context; graph equations on coordinate axes with labels and scales and use them to make predictions. Limit to contexts arising from linear, quadratic, exponential, absolute value, and linear piecewise functions. [Algebra I with Probability, 12] 15. Represent constraints by equations and/or inequalities, and solve systems of equations and/or inequalities, interpreting solutions as viable or nonviable options in a modeling context. Limit to contexts arising from linear, quadratic, exponential, absolute value, and linear piecewise functions. [Algebra I with Probability, 12] 	IS4 Explain how it is possible to mentally abstract and construct mathematical objects from direct observations of reality and how one's perception of that reality is important to what one is doing. DS4 Exhibit appreciation for the ongoing nature of mathematical inquiry.		
Functions shift the emphasis from a point-by-point relationship between two variables (input/output) to considering an entire set of ordered pairs (where each first element is paired with exactly one second element) as an entity with its own features and characteristics.			

16. Define a function as a mapping from one set (called the domain) to		
another set (called the range) that assigns to each element of the domain		
exactly one element of the range. [Grade 8, 13, edited for added content]		
a. Use function notation, evaluate functions for inputs in their domains,		
and interpret statements that use function notation in terms of a		
context. [Grade 8, 14, edited for added content] Note: If f is a function	IS2 Demonstrate how sound logical	
and x is an element of its domain, then f(x) denotes the output of f	arguments and other processes of	
corresponding to the input x.	mathematics are foundational to its	
b. Relate the domain of a function to its graph and, where applicable, to	discipline	
the quantitative relationship it describes. Limit to linear, quadratic,		
exponential, and absolute value functions. [Algebra I with Probability,		
15]		
17. Given a relation defined by an equation in two variables, identify the		
graph of the relation as the set of all its solutions plotted in the coordinate		
plane. [Algebra I with Probability, 14] Note: The graph of a relation often		
forms a curve (which could be a line).		
18. Compare and contrast relations and functions represented by equations,		
graphs, or tables that show related values; determine whether a relation is a		
function. Identify that a function f is a special kind of relation defined by the	-	
equation y = f(x). [Algebra I with Probability, 16]		
19. Combine different types of standard functions to write, evaluate, and	DS9 Advance an understanding of the	
interpret functions in context. Limit to linear, quadratic, exponential, and	ability of the human intellect to know	
absolute value functions.	, and the desire of the will to want to	
a. Use arithmetic operations to combine different types of standard	know more.	
functions to write and evaluate functions. Example: Given two		
functions, one representing flow rate of water and the other		
representing evaporation of that water, combine the two functions to		
determine the amount of water in the container at a given time.		
b. Use function composition to combine different types of standard		
functions to write and evaluate functions. [Algebra I with Probability,		

17] Example: Given the following relationships, determine what the expression $S(T(t))$ represents. Function Input Output G Amount of studying: s Grade in course: $G(s)$ S Grade in course: g Amount of screen time: $S(g)$ T Amount of screen time: t Number of followers: $T(t)$	
 20. Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x). a. Find the approximate solutions of an equation graphically, using tables of values, or finding successive approximations, using technology where appropriate. [Algebra I with Probability, 19] Note: Include cases where f(x) is linear, quadratic, exponential, or absolute value functions and g(x) is constant or linear. 21. Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the corresponding half-planes, using technology where appropriate. [Algebra I with Probability, 20] 22. Solve systems consisting of linear and/or quadratic equations in two variables graphically, using technology where appropriate. [Algebra I with Probability, 20] 	GS3 Have faith in the glory and dignity of human reason as both a gift from God and a reflection of Him in whose image and likeness we are made. IS1 Explain the nature of rational discourse and argument and the desirability of precision and deductive certainty which mathematics makes possible and is not possible to the same degree in other disciplines.
Functions can be described by using a variety of representations: mapping of definitions, tables, and grap	liagrams, function notation (e.g., f(x) = x ²), recursive ohs.
 23. Compare properties of two functions, each represented in a different way (algebraically, graphically, numerically in tables, or by verbal descriptions). Include linear, quadratic, exponential, absolute value, and linear piecewise. [Algebra I with Probability, 21, edited] a. Distinguish between linear and non-linear functions. [Grade 8, 15a] 	DS2 Share with others the beauty, harmony, proportion, radiance, and wholeness present in mathematics.

24. Define sequences as functions, including recursive definitions, whose		
domain is a subset of the integers.		
a. Write explicit and recursive formulas for arithmetic and geometric		
sequences and connect them to linear and exponential functions.		
[Algebra I with Probability, 22] Example: A sequence with constant		
growth will be a linear function, while a sequence with proportional		
growth will be an exponential function.		
Functions that are members of the same family have distinguishing attributes (structure) common to all functions within	that family.
25. Identify the effect on the graph of replacing f (x) by f (x) + k, $k \cdot f(x)$, f (kx),		
and f (x + k) for specific values of k (both positive and negative); find the value		
of k given the graphs. Experiment with cases and explain the effects on the		
graph, using technology as appropriate. Extend from linear to quadratic,		
exponential, absolute value, and linear piecewise functions. [Algebra I with		
Probability, 23, edited]		
26. Distinguish between situations that can be modeled with linear functions		
and those that can be modeled with exponential functions.		
a. Show that linear functions grow by equal differences over equal		
intervals, while exponential functions grow by equal factors over		
equal intervals.		
b. Define linear functions to represent situations in which one quantity		
changes at a constant rate per unit interval relative to another.		
c. Define exponential functions to represent situations in which a		
quantity grows or decays by a constant percent rate per unit interval		
relative to another. [Algebra I with Probability, 24]		
27. Construct linear and exponential functions, including arithmetic and	DS2 Share with others the beauty,	
geometric sequences, given a graph, a description of a relationship, or two	harmony, proportion, radiance, and	
input-output pairs (include reading these from a table). [Algebra I with	wholeness present in mathematics.	
Probability, 25]		
28. Use graphs and tables to show that a quantity increasing exponentially		
eventually exceeds a quantity increasing linearly or quadratically. [Algebra I		
with Probability, 26]		

29. Interpret the parameters of functions in terms of a context. Extend from	
linear functions, written in the form mx + b, to exponential functions, written	
in the form ab ^x . [Algebra I with Probability, 27] Example: If the function V(t) =	
19885(0.75) ^t describes the value of a car after it has been owned for t years,	
19885 represents the purchase price of the car when t = 0, and 0.75	
represents the annual rate at which its value decreases.	
Functions can be represented graphically and key features of the graphs, including zeros, intercepts, and, when relevan	nt, rate of
change and maximum/minimum values, can be associated with and interpreted in terms of the equivalent symbolic repre	esentation.
30. For a function that models a relationship between two quantities,	
interpret key features of graphs and tables in terms of the quantities, and	
sketch graphs showing key features given a verbal description of the	
relationship. Note: Key features include: intercepts; intervals where the	
function is increasing, decreasing, positive, or negative; maximums and	
minimums; symmetries; and end behavior. Extend from relationships that can	
be represented by linear functions to quadratic, exponential, absolute value,	
and general piecewise functions. [Algebra I with Probability, 28]	
31. Calculate and interpret the average rate of change of a function	
(presented symbolically or as a table) over a specified interval. Estimate the	
rate of change from a graph. Limit to linear, quadratic, exponential, and	
absolute value functions. [Algebra I with Probability, 29]	
32. Graph functions expressed symbolically and show key features of the	
graph, by hand in simple cases and using technology for more complicated	
cases.	
a. Graph linear and quadratic functions and show intercepts, maxima,	
and minima.	
b. Graph piecewise-defined functions, including step functions and	
absolute value functions.	
c. Graph exponential functions, showing intercepts and end behavior.	
[Algebra I with Probability, 30]	

Functions model a wide variety of real situations and can help students understand the processes of making and changing assumptions, assigning variables, and finding solutions to contextual problems.			
33. Use the mathematical modeling cycle to solve real-world problems	DS3 Advocate for the pursuit of		
involving linear, quadratic, exponential, absolute value, and linear piecewise	understanding for its own sake and the		
functions. [Algebra I with Probability, 31]	intrinsic value r discovery of the true		
	and the beautiful often at the		
	requirement of great sacrifice,		
	discipline, and effort.		
Data Analysis, Statistics, and Probability (NAEP) (was	Measurement and Data DOB)		
Data Analysis, Statistics and Prol	pability		
Investigate patterns of association in b	ivariate data.		
34. Construct and interpret scatter plots for bivariate measurement data to	IS3 Recognize how mathematical		
investigate patterns of association between two quantities, describing	arguments and processes can be		
patterns in terms of positive, negative, or no association, linear and nonlinear	extrapolated to other areas of study,		
association, clustering, and outliers. [Grade 8, 18]	including theology and philosophy.		
35. Given a scatter plot that suggests a linear association, informally draw a			
line to fit the data, and assess the model fit by judging the closeness of the	DS8 Exhibit humility at knowing that as		
data points to the line. [Grade 8, 19]	a human being man can only grasp a		
36. Use a linear model of a real-world situation to solve problems and make	portion of the truths of the universe.		
predictions.			
a. Describe the rate of change and y-intercept in the context of a			
problem using a linear model of a real-world situation. [Grade 8, 20]			
37. Construct and interpret a two-way table summarizing data on two	IS5 Recognize personal bias in inquiry		
categorical variables collected from the same subjects, using relative	and articulate why inquiry should be		
frequencies calculated for rows or columns to describe possible associations	undertaken in a fair and independent		
between the two variables. [Grade 8, 21]	manner.		

Data arise from a context and come in two types: quantitative (continuous or discrete) and categorical. Technology can be used to			
"clean" and organize data, including very large data sets, into a useful and manageable structure – a first step in any analysis of			
data.			
38. Distinguish between quantitative and categorical data and between the			
techniques that may be used for analyzing data of these two types. [Algebra I			
with Probability, 34] Example: The color of cars is categorical and so is			
summarized by frequency and proportion for each color category, while the			
mileage on each car's odometer is quantitative and can be summarized by			
the mean.			
The association between two categorical variables is typically represented b	y using two-way tables and segmented ba	r graphs.	
39. Analyze the possible association between two categorical variables.			
a. Summarize categorical data for two categories in two-way frequency			
tables and represent using segmented bar graphs.			
b. Interpret relative frequencies in the context of categorical data			
(including joint, marginal, and conditional relative frequencies).			
c. Identify possible associations and trends in categorical data. [Algebra I			
with Probability, 35]			
Data analysis techniques can be used to develop models of contextual situation	ns and to generate and evaluate possible s	solutions to	
real problems involving those co	ntexts.		
40. Generate a two-way categorical table in order to find and evaluate	IS8 Explain how fundamental questions		
solutions to real-world problems.	of values, common sense, and religious		
a. Aggregate data from several groups to find an overall association	and human truths and experiences are		
between two categorical variables.	beyond the scope of mathematical		
b. Recognize and explore situations where the association between two	inquiry and its syllogisms.		
categorical variables is reversed when a third variable is considered			
(Simpson's Paradox). [Algebra I with Probability, 36] Example: In a			
certain city, Hospital 1 has a higher fatality rate than Hospital 2. But			
when considering mildly-injured patients and severely-injured patients			
as separate groups, Hospital 1 has a lower fatality rate among both			
groups than Hospital 2, since Hospital 1 is a Level 1 Trauma Center.			
Thus, Hospital 1 receives most of the severely-injured patients who are			

less likely to survive overall but have a better chance of surviving in						
	Hospital 1 than they would in Hospital 2.					
	Math	ematical and statistical	reasoning about data ca	an be used to	o evaluate conclusions and assess risks.	1
41. Use	e mathematio	cal and statistical reasor	ing with bivariate categ	orical data	IS8 Explain how fundamental questions	
in orde	r to draw co	nclusions and assess risk	k. [Algebra I with Probab	oility, 32]	of values, common sense, and religious	
Examp	le: In a clinica	al trial comparing the ef	fectiveness of flu shots A	A and B, 21	and human truths and experiences are	
subject	s in treatmer	nt group A avoided getti	ng the flu while 29 cont	racted it. In	beyond the scope of mathematical	
group	3, 12 avoidea	the flu while 13 contra	cted it. Discuss which flu	i shot	inquiry and its syllogisms.	
appear	s to be more	effective in reducing the	e chances of contracting	the flu.		
Possibl	e answer: Ev	en though more people	in group A avoided the f	flu than in		
group	B, the propor	tion of people avoiding	the flu in group B is grea	ater than		
the pro	portion in gr	oup A, which suggests t	hat treatment B may be 	more		
effectiv	e în lowering	the risk of getting the j	flu.			
				_		
		Contracted Flu	Did Not Contract Flu			
	Flu Shot A	29	21]		
	Flu Shot B	13	12			
	Total	42	33			
	Making	and defending informe	ed. data-based decisions	s is a charact	eristic of a quantitatively literate person.	
42. Des	sign and carry	out an investigation to	determine whether the	ere appears	GS4 Explain how mathematics in its	
to be a	n association	between two categoric	al variables. and write a	3	reflection of the good, true, and	
persua	sive argumer	nt based on the results of	of the investigation. [Alg	ebra I with	beautiful reveals gualities of being and	
Probability. 33]		the presence of God.				
Example: Investigate whether there appears to be an association between						
successfully completing a task in a given length of time and listening to music		IS3 Recognize how mathematical				
while attempting to complete the task. Randomly assign some students to		ome students to arguments and processes can be				
listen to music while attempting to complete the task and others to complete		extrapolated to other areas of study,				
the tas	k without list	ening to music. Discuss	whether students shoul	d listen to	including theology and philosophy.	
music v	while studyin	g, based on that analysi	S			

Two events are independent if the occurrence of one event does not affect the probability of the other event. Determining whether		
two events are independent can be used for finding and understanding probabilities.		
43. Describe events as subsets of a sample space (the set of outcomes) using		
characteristics (or categories) of the outcomes, or as unions, intersections, or		
complements of other events ("or," "and," "not"). [Algebra I with Probability,		
37]		
44. Explain whether two events, A and B, are independent, using two-way		
tables or tree diagrams. [Algebra I with Probability, 38]		
Conditional probabilities – that is, those probabilities that are "conditioned" by some known information – can b	e computed from	
data organized in contingency tables. Conditions or assumptions may affect the computation of a prob	ability.	
45. Compute the conditional probability of event A given event B, using two-		
way tables or tree diagrams. [Algebra I with Probability, 39]		
46. Recognize and describe the concepts of conditional probability and		
independence in everyday situations and explain them using everyday		
language. [Algebra I with Probability, 40]		
Example: Contrast the chance of having lung cancer if you are a smoker with		
the chance of being a smoker if you have lung cancer.		
47. Explain why the conditional probability of A given B is the fraction of B's		
outcomes that also belong to A, and interpret the answer in context. [Algebra		
I with Probability, 41]		
Example: the probability of drawing a king from a deck of cards, given that it		
is a face card, is (4/52)/(12/52), which is 1/3.		

Geometry and Measurem	nent	
Understand and apply the Pythagorea	an Theorem.	
48. Informally justify the Pythagorean Theorem and its converse. [Grade 8, 26]	IS4 Explain how it is possible to mentally abstract and construct	
49. Apply the Pythagorean Theorem to find the distance between two points in a coordinate plane. [Grade 8, 27]	mathematical objects from direct observations of reality and how one's	
50. Apply the Pythagorean Theorem to determine unknown side lengths of right triangles, including real-world applications. [Grade 8, 28]	perception of that reality is important to what one is doing.	
	DS6 Propose how mathematical objects or proofs (such as the golden mean, the Fibonacci numbers, the musical scale, and geometric proofs) suggest divine origin.	

Geometry with Data Analysis

Standard	Cardinal Newman	Date
		Taught
Number Properties and Operation	ons (NAEP)	
Number and Quantity		
Together, irrational numbers and rational numbers complete the real number while there exist numbers beyond the real numbers	r system, representing all points on the num s called complex numbers.	ber line,
1. Extend understanding of irrational and rational numbers by rewriting expressions involving radicals, including addition, subtraction, multiplication, and division, in order to recognize geometric patterns.	IS6 Evaluate the ongoing nature of mathematical inquiry, its inexhaustibility, and its openness to the infinite.	
Quantitative reasoning includes and mathematical modeling requ	ires attention to units of measurement.	
 2. Use units as a way to understand problems and to guide the solution of multi-step problems. a. Choose and interpret units consistently in formulas. b. Choose and interpret the scale and the origin in graphs and data displays. c. Define appropriate quantities for the purpose of descriptive modeling. d. Choose a level of accuracy appropriate to limitations of measurements when reporting quantities. 	GS3 Have faith in the glory and dignity of human reason as both a gift from God and a reflection of Him in whose image and likeness we are made.	
Algebra and Functions		
Focus 1: Algebra		
The structure of an equation or inequality (including, but not limited to, one-variable linear and quadratic equations, inequalities, and systems of linear equations in two variables) can be purposefully analyzed (with and without technology) to determine an efficient strategy to find a solution, if one exists, and then to justify the solution.		

3. Find the coordinates of the vertices of a polygon determined by a set of	IS1 Explain the nature of rational	
lines, given their equations, by setting their function rules equal and solving,	discourse and argument and the	
or by using their graphs.	desirability of precision and deductive	
	certainty which mathematics makes	
	possible and is not possible to the same	
	degree in other disciplines.	
Expressions, equations, and inequalities can be used to analyze and make pred	ictions, both within mathematics and as ma	thematics
is applied in different contexts – in particular, contexts that arise in relatio	n to linear, quadratic, and exponential situa	tions.
4. Rearrange formulas to highlight a quantity of interest, using the same	DS1 Display a sense of wonder about	
reasoning as in solving equations.	mathematical relationships, especially	
Example: Rearrange the formula for the area of a trapezoid to highlight one	mathematical certitude which is	
of the bases.	independent of human opinion.	
Focus 2: Connecting Algebra to Fi	unctions	
Graphs can be used to obtain exact or approximate solutions of equations, ine	qualities, and systems of equations and ineq	ualities—
including systems of linear equations in two variables and systems of linear a	nd quadratic equations (given or obtained k	by using
technology).		
5. Verify that the graph of a linear equation in two variables is the set of all its		
solutions plotted in the coordinate plane, which forms a line.	DS6 Propose how mathematical objects	
6. Derive the equation of a circle of given center and radius using the	or proofs (such as the golden mean, the	
Pythagorean Theorem.	Fibonacci numbers, the musical scale,	
a. Given the endpoints of the diameter of a circle, use the midpoint	and geometric proofs) suggest divine	
formula to find its center and then use the Pythagorean Theorem to	origin.	
find its equation.		

Data Analysis, Statistics, and Probability		
Focus 1: Quantitative Literacy		
Mathematical and statistical reasoning about data can be used to	o evaluate conclusions and assess risks.	
7. Use mathematical and statistical reasoning with quantitative data, both	IS7 Explain man's limitations of	
univariate data (set of values) and bivariate data (set of pairs of values) that	understanding and uncovering all	
suggest a linear association, in order to draw conclusions and assess risk.	mathematical knowledge.	
Example: Estimate the typical age at which a lung cancer patient is diagnosed,	IS8 Explain how fundamental questions	
and estimate how the typical age differs depending on the number of	of values, common sense, and religious	
cigarettes smoked per day.	and human truths and experiences are	
	beyond the scope of mathematical	
	inquiry and its syllogisms.	
Focus 2: Visualizing and Summariz	ing Data	
Data arise from a context and come in two types: quantitative (continuous or	discrete) and categorical. Technology can be	e used to
"clean" and organize data, including very large data sets, into a useful and m	anageable structure – a first step in any ana	lysis of
data.		
8. Use technology to organize data, including very large data sets, into a	DS8 Exhibit humility at knowing that as a	
useful and manageable structure.	human being man can only grasp a	
	portion of the truths of the universe.	
Distributions of quantitative data (continuous or discrete) in one variable sl	nould be described in the context of the dat	a with
respect to what is typical (the shape, with appropriate measures of center and	variability, including standard deviation) an	d what is
not (outliers), and these characteristics can be used to compare two o	r more subgroups with respect to a variable	•
9. Represent the distribution of univariate quantitative data with plots on the	IS3 Demonstrate how sound logical	
real number line, choosing a format (dot plot, histogram, or box plot) most	arguments and other processes of	
appropriate to the data set, and represent the distribution of bivariate	mathematics are foundational to its	
quantitative data with a scatter plot. Extend from simple cases by hand to	discipline.	
more complex cases involving large data sets using technology.		
10. Use statistics appropriate to the shape of the data distribution to		
compare and contrast two or more data sets, utilizing the mean and median	DS3 Advocate for the pursuit of	
for center and the interquartile range and standard deviation for variability.	understanding for its own sake and the	

a. Explain how standard deviation develops from mean absolute	intrinsic value or discovery of the true	
deviation.	and the beautiful often at the	
b. Calculate the standard deviation for a data set, using technology	requirement of great sacrifice, discipline,	
where appropriate.	and effort.	
11. Interpret differences in shape, center, and spread in the context of data		
sets, accounting for possible effects of extreme data points (outliers) on		
mean and standard deviation.		
Scatter plots, including plots over time, can reveal patterns, trends, clusters,	and gaps that are useful in analyzing the ass	ociation
between two contextual vari	ables.	
12. Represent data of two quantitative variables on a scatter plot, and	DS7 Exhibit appreciation for the process	
describe how the variables are related.	of discovering meanings and truths	
a. Find a linear function for a scatter plot that suggests a linear	existing within the solution of the	
association and informally assess its fit by plotting and analyzing	problem and not just arriving at an	
residuals, including the squares of the residuals, in order to improve	answer.	
its fit.		
b. Use technology to find the least-squares line of best fit for two		
quantitative variables.		
Analyzing the association between two quantitative variables should invo	lve statistical procedures, such as examining	(with
technology) the sum of squared deviations in fitting a linear model, analyzing	ng residuals for patterns, generating a least-s	squares
regression line and finding a correlation coefficient, and different	iating between correlation and causation.	
13. Compute (using technology) and interpret the correlation coefficient of a		
linear relationship.		
14. Distinguish between correlation and causation.		
Data analysis techniques can be used to develop models of contextual situation	ons and to generate and evaluate possible so	lutions to
real problems involving those c	ontexts.	
15. Evaluate possible solutions to real-life problems by developing linear	IS5 Recognize personal bias in inquiry	
models of contextual situations and using them to predict unknown values.	and articulate why inquiry should be	
a. Use the linear model to solve problems in the context of the given	undertaken in a fair and independent	
data.	manner.	
b. Interpret the slope (rate of change) and the intercept (constant term)		
of a linear model in the context of the given data.		

Geometry with Data Analysis

Geometry and Measurement		
Focus 1: Measurement		
Areas and volumes of figures can be computed by determining how the figure	might be obtained from simpler figures by c	lissection
and recombination.		
16. Identify the shapes of two-dimensional cross-sections of three-		
dimensional objects, and identify three-dimensional objects generated by	IS4 Explain how it is possible to mentally	
rotations of two-dimensional objects.	abstract and construct mathematical	
 17. Model and solve problems using surface area and volume of solids, including composite solids and solids with portions removed. a. Give an informal argument for the formulas for the surface area and volume of a sphere, cylinder, pyramid, and cone using dissection arguments, Cavalieri's Principle, and informal limit arguments. b. Apply geometric concepts to find missing dimensions to solve surface area or volume problems. 	objects from direct observations of reality and how one's perception of that reality is important to what one is doing (see Appendix F).	
Constructing approximations of measurements with different tools, includ measurement.	ing technology, can support an understandi	ng of
18. Given the coordinates of the vertices of a polygon, compute its perimeter		
and area using a variety of methods, including the distance formula and		
dynamic geometry software, and evaluate the accuracy of the results.		
When an object is the image of a known object under a similarity transforma	tion, a length, area, or volume on the image	e can be
computed by using proportional rela	ationships.	
19. Derive and apply the relationships between the lengths, perimeters,	DS2 Share with others the beauty,	
areas, and volumes of similar figures in relation to their scale factor.	harmony, proportion, radiance, and	
20. Derive and apply the formula for the length of an arc and the formula for	wholeness present in mathematics.	
the area of a sector		

Focus 2: Transformations		
Applying geometric transformations to figures provides opportunities for des	cribing the attributes of the figures preserve	ed by the
transformation and for describing symmetries by examining wh	en a figure can be mapped onto itself.	
21. Represent transformations and compositions of transformations in the		
plane (coordinate and otherwise) using tools such as tracing paper and		
geometry software.		
a. Describe transformations and compositions of transformations as		
functions that take points in the plane as inputs and give other points		
as outputs, using informal and formal notation.		
b. Compare transformations which preserve distance and angle measure		
to those that do not.	DS5 Exhibit habits of thinking	
22. Explore rotations, reflections, and translations using graph paper, tracing	quantitatively and in an orderly manner,	
paper, and geometry software.	especially through immersion in	
a. Given a geometric figure and a rotation, reflection, or translation,	mathematical observations found within	
draw the image of the transformed figure using graph paper, tracing	creation.	
paper, or geometry software.		
b. Specify a sequence of rotations, reflections, or translations that will		
carry a given figure onto another.		
c. Draw figures with different types of symmetries and describe their		
attributes.		
23. Develop definitions of rotation, reflection, and translation in terms of		
angles, circles, perpendicular lines, parallel lines, and line segments.		

Showing that two figures are congruent involves showing that there is a rigid motion (translation, rotation, reflection, or glide		
reflection) or, equivalently, a sequence of rigid motions the	at maps one figure to the other	
24. Define congruence of two figures in terms of rigid motions (a sequence of translations, rotations, and reflections); show that two figures are congruent		
by finding a sequence of rigid motions that many one figure to the other		
by multip a sequence of right motions that maps one righter to the other.		
Example: $\triangle ABC$ is congruent to $\triangle XYZ$ since a reflection followed by a		
translation maps $\triangle ABC$ onto $\triangle XYZ$		
$\begin{array}{c c} B(-1,6) & & B'(1,6) \\ \hline & & & & \\ C(-2,3) & & & \\ \hline \end{array} \\ \hline & & & \\ \hline \end{array} \\ \hline \\ \hline & & & \\ \hline \hline \\ \hline & & & \\ \hline \hline \\ \hline \\$	IS2 Demonstrate how sound logical arguments and other processes of	
25. Verify criteria for showing triangles are congruent using a sequence of	mathematics are foundational to its	
rigid motions that map one triangle to another.	discipline.	
 Verify that two triangles are congruent if and only if corresponding pairs of sides and corresponding pairs of angles are congruent. 		
b. Verify that two triangles are congruent if (but not only if) the following		
groups of corresponding parts are congruent: angle-side-angle (ASA),		
side-angle-side (SAS), side-side-side (SSS), and angle-angle-side (AAS).		
Example: Given two triangles with two pairs of congruent		
corresponding sides and a pair of congruent included angles, show		
that there must be a sequence of rigid motions will map one onto the		
other.		

Showing that two figures are similar involves finding a similarity transformation (dilation or composite of a dilation with a rigid		
motion) or, equivalently, a sequence of similarity transformation	ns that maps one figure onto the other.	
26. Verify experimentally the properties of dilations given by a center and a		
scale factor.		
a. Verify that a dilation takes a line not passing through the center of the		
dilation to a parallel line and leaves a line passing through the center		
unchanged.		
b. Verify that the dilation of a line segment is longer or shorter in the		
ratio given by the scale factor.		
27. Given two figures, determine whether they are similar by identifying a		
similarity transformation (sequence of rigid motions and dilations) that maps		
one figure to the other.	CS2 Dovelop lines of inquiry to	
28. Verify criteria for showing triangles are similar using a similarity	understand why things are true and why	
transformation (sequence of rigid motions and dilations) that maps one	thow are false	
triangle to another.		
a. Verify that two triangles are similar if and only if corresponding pairs		
of sides are proportional and corresponding pairs of angles are		
congruent.		
b. Verify that two triangles are similar if (but not only if) two pairs of		
corresponding angles are congruent (AA), the corresponding sides are		
proportional (SSS), or two pairs of corresponding sides are		
proportional and the pair of included angles is congruent (SAS).		
Example: Given two triangles with two pairs of congruent		
corresponding sides and a pair of congruent included angles, show		
there must be a set of rigid motions that maps one onto the other.		

Focus 3: Geometric Arguments, Reasoning, and Proof		
Using technology to construct and explore figures with constraints provides an opportunity to explore the independence and		
dependence of assumptions and co	onjectures.	
29. Find patterns and relationships in figures including lines, triangles,	IS1 Explain the nature of rational	
quadrilaterals, and circles, using technology and other tools.	discourse and argument and the	
a. Construct figures, using technology and other tools, in order to make and	desirability of precision and deductive	
test conjectures about their properties.	certainty which mathematics makes	
i. Constructions must include: copying a segment; copying an	possible and is not possible to the same	
angle; bisecting a segment; bisecting an angle; constructing	degree in other disciplines.	
perpendicular lines, including the perpendicular bisector of a		
line segment; and constructing a line parallel to a given line		
through a point not on the line.		
ii. Additional constructions may include an equilateral triangle, a		
square, and a regular hexagon inscribed in a circle, the		
inscribed and circumscribed circles of a triangle, and prove		
properties of angles for a quadrilateral inscribed in a circle.		
b. Identify different sets of properties necessary to define and construct		
figures.		
Proof is the means by which we demonstrate whether a statement is true or fa	alse mathematically, and proofs can be com	municated
in a variety of ways (e.g., two-column	, paragraph).	
30. Develop and use precise definitions of figures such as angle, circle,	GS1 Demonstrate the mental habits of	
perpendicular lines, parallel lines, and line segment, based on the undefined	precise, determined, careful, and	
notions of point, line, distance along a line, and distance around a circular arc.	accurate questioning, inquiry, and	
	reasoning in the pursuit of transcendent	
	truths.	
31. Justify whether conjectures are true or false in order to prove theorems	DS6 Propose how mathematical objects	
and then apply those theorems in solving problems, communicating proofs in	or proofs (such as the golden mean, the	
a variety of ways, including flow chart, two-column, and paragraph formats.	Fibonacci numbers the musical scale	
a. Investigate, prove, and apply theorems about lines and angles,	and geometric proofs) suggest divine	
including but not limited to: vertical angles are congruent; when a	origin	
transversal crosses parallel lines, alternate interior angles are		

Geometry with Data Analysis

	congruent and corresponding angles are congruent; the points on the perpendicular bisector of a line segment are those equidistant from		
	the segment's endpoints.		
b.	Investigate, prove, and apply theorems about triangles, including but		
	not limited to: the sum of the measures of the interior angles of a		
	triangle is 180°; the base angles of isosceles triangles are congruent;		
	the segment joining the midpoints of two sides of a triangle is parallel		
	to the third side and half the length; a line parallel to one side of a		
	triangle divides the other two proportionally, and conversely; the		
	Pythagorean Theorem using triangle similarity.		
с.	Investigate, prove, and apply theorems about parallelograms and		
	other quadrilaterals, including but not limited to both necessary and		
	sufficient conditions for parallelograms and other quadrilaterals, as		
	well as relationships among kinds of quadrilaterals. Example: Prove		
	that rectangles are parallelograms with congruent diagonals.		
Proofs	of theorems can sometimes be made with transformations, coordinates	, or algebra; all approaches can be useful, a	nd in some
	cases one may provide a more accessible or understan	dable argument than another.	
32. Use	coordinates to prove simple geometric theorems algebraically.		
a.	Understand and apply the Law of Sines and the Law of Cosines to find	DS6 Propose how mathematical objects	
	unknown measurements in right and non-right triangles.	or proofs (such as the golden mean the	
b.	Verify that all circles are similar.	Fibonacci numbers, the musical scale	
33. Pro	we the slope criteria for parallel and perpendicular lines and use them	and geometric proofs) suggest divine	
to solv	e geometric problems.	and geometric proois) suggest divine	
Examp	le: Find the equation of a line parallel or perpendicular to a given line		
that pa	asses through a given point.		

Focus 4: Solving Applied Problems and Modeling in Geometry			
Recognizing congruence, similarity, symmetry, measurement opportunities, and other geometric ideas, including right triangle			
trigonometry, in real-world contexts provides a means of building understandi	trigonometry, in real-world contexts provides a means of building understanding of these concepts and is a powerful tool for solving		
problems related to the physical world i	n which we live.		
34. Use congruence and similarity criteria for triangles to solve problems in real-			
world contexts and to prove relationships in geometric figures.			
35. Discover and apply relationships in similar right triangles.			
a. Derive and apply the constant ratios of the sides in special right			
triangles (45°-45°-90° and 30°-60°-90°).			
b. Use similarity to explore and define basic trigonometric ratios,			
including sine ratio, cosine ratio, and tangent ratio.			
c. Explain and use the relationship between the sine and cosine of			
complementary angles.			
d. Demonstrate the converse of the Pythagorean Theorem.			
e. Use trigonometric ratios and the Pythagorean Theorem to solve right			
triangles in applied problems, including finding areas of regular			
polygons.			
36. Use geometric shapes, their measures, and their properties to model	DS4 Exhibit appreciation for the ongoing		
objects and use those models to solve problems.	nature of mathematical inquiry.		
37. Investigate, identify and apply relationships among inscribed angles, radii,	GS4 Explain how mathematics in its		
and chords, including but not limited to: the relationship between central,	reflection of the good, true, and		
inscribed, and circumscribed angles; inscribed angles on a diameter are right	beautiful reveals qualities of being and		
angles; the radius of a circle is perpendicular to the tangent where the radius	the presence of God.		
intersects the circle.			

Experiencing the mathematical modeling cycle in problems involving geometric concepts, from the simplification of the real				
problem through the solving of the simplified problem, the interpretation of its solution, and the checking of the solution's				
feasibility, introduces geometric techniques, tools, and points of v	iew that are valuable to problem-solving.			
38. Use the mathematical modeling cycle involving geometric methods to	DS9 Advance an			
solve design problems. understanding of the				
Examples: Design an object or structure to satisfy physical constraints or ability of the human				
ninimize cost; work with typographic grid systems based on ratios; apply intellect to know and				
concepts of density based on area and volume.	the desire of the will to			
	want to know more.			

Standard	Cardinal Newman	Date
		Taught
Number Properties and Ope	rations	
Number and Quantity		
Together, irrational numbers and rational numbers complete the real number	r system, representing all points on the num	ber line,
while there exist numbers beyond the real numbers	s called complex numbers.	1
1. Explain how the definition of the meaning of rational exponents follows from		
extending the properties of integer exponents to those values, allowing for a	IS6 Evaluate the ongoing nature of	
notation for radicals in terms of rational exponents.	mathematical inquiry, its inexhaustibility,	
 Rewrite expressions involving radicals and rational exponents using the properties of exponents. 	and its openness to the infinite.	
3. Define the imaginary number <i>i</i> such that $i^2 = -1$.	IS7 Explain man's limitations of	
	understanding and uncovering all	
	mathematical knowledge.	
Algebra and Functions		
Focus 1: Algebra		
Expressions can be rewritten in equivalent forms by using algebraic properties	s, including properties of addition, multiplica	tion, and
exponentiation, to make different characterist	ics or features visible.	
4. Interpret linear, quadratic, and exponential expressions in terms of a	IS1 Explain the nature of rational	
context by viewing one or more of their parts as a single entity.	discourse and argument and the	
Example: Interpret the accrued amount of investment $P(1 + r)^{t}$, where P is	desirability of precision and deductive	
the principal and r is the interest rate, as the product of P and a factor	certainty which mathematics makes	
depending on time t.	possible and is not possible to the same	
	degree in other disciplines.	

	DS7 Exhibit appreciation for the process of discovering meanings and truths existing within the solution of the problem and not just arriving at an answer.
5. Rearrange formulas to highlight a quantity of interest using the same	
reasoning as in solving equations	
a. Use the structure of an expression to identify ways to rewrite it.	
<i>Example</i> : See $x^4 - y^4$ as $(x^2)^2 - (y^2)^2$, thus recognizing it as a difference	
of squares that can be factored as $(x^2 - y^2)(x^2 + y^2)$.	
6. Choose and produce an equivalent form of an expression to reveal and	
explain properties of the quantity represented by the expression.	DS1 Display a sense of wonder about
a. Factor quadratic expressions with leading coefficients of one, and use	mathematical relationships, especially
the factored form to reveal the zeros of the function it defines.	mathematical certitude which is
b. Use the vertex form of a quadratic expression to reveal the maximum	independent of human opinion.
or minimum value and the axis of symmetry of the function it defines;	
complete the square to find the vertex form of quadratics with a	
leading coefficient of one.	
c. Use the properties of exponents to transform expressions for	
exponential functions.	
Example: Identify percent rate of change in functions such as $y = (x + y)^{1/2}$	
$(1.02)^{c}$, y = $(0.97)^{c}$, y = $(1.01)^{12c}$, y = $(1.2)^{0/10}$, and classify them as	
representing exponential growth or decay.	
7. Add, subtract, and multiply polynomials, showing that polynomials form a	DS7 Exhibit appreciation for the process
system analogous to the integers, namely, they are closed under the	of discovering meanings and truths
operations of addition, subtraction, and multiplication.	existing within the solution of the
	problem and not just arriving at an
	answer.

Finding solutions to an equation, inequality, or system of equations or inequalities requires the checking of candidate solutions, whether generated analytically or graphically to ensure that solutions are found and that those found are not extraneous			
8. Explain why extraneous solutions to an equation involving absolute values	GS1 Demonstrate the mental habits of		
may arise and how to check to be sure that a candidate solution satisfies an	precise, determined, careful, and		
equation.	accurate questioning, inquiry, and		
	reasoning in the pursuit of transcendent		
	truths.		
The structure of an equation or inequality (including, but not limited to, one-	variable linear and quadratic equations, inequ	ualities,	
and systems of linear equations in two variables) can be purposefully analy	zed (with and without technology) to determ	ine an	
efficient strategy to find a solution, if one exists, and	then to justify the solution.		
9. Select an appropriate method to solve a quadratic equation in one	GS2 Develop lines of inquiry to		
variable.	understand why things are true and why		
a. Use the method of completing the square to transform any quadratic	they are false.		
equation in x into an equation of the form $(x - p)^2 = q$ that has the			
same solutions. Derive the quadratic formula from this form.			
b. Solve quadratic equations by inspection, taking square roots,			
completing the square and the quadratic formula, and factoring as			
appropriate to the initial form of the equation.			
10. Select an appropriate method to solve a system of two linear equations in	DS1 Display a sense of wonder about		
two variables.	mathematical relationships, especially		
a. Solve a system of two equations in two variables by using linear	mathematical certitude which is		
combinations; contrast situations in which use of linear combinations	independent of human opinion.		
is more efficient with those in which substitution is more efficient.			
b. Contrast solutions to a system of two linear equations in two variables			
produced by algebraic methods with graphical and tabular methods.			
Expressions, equations, and inequalities can be used to analyze and make prec	lictions, both within mathematics and as mat	hematics	
is applied in different contexts – in particular, contexts that arise in relation	n to linear, quadratic, and exponential situat	ions.	
11. Create equations and inequalities in one variable and use them to solve			
problems in context, either exactly or approximately. Extend from contexts	IS4 Explain how it is possible to mentally		
arising from linear functions to those involving quadratic, exponential, and	abstract and construct mathematical		
absolute value functions.			

12. Create equations in two or more variables to represent relationships between quantities in context; graph equations on coordinate axes with labels and scales and use them to make predictions. Limit to contexts arising from linear, quadratic, exponential, absolute value, and linear piecewise functions.	objects from direct observations of reality and how one's perception of that reality is important to what one is doing. DS4 Exhibit appreciation for the ongoing	
13. Represent constraints by equations and/or inequalities, and solve systems of equations and/or inequalities, interpreting solutions as viable or nonviable	nature of mathematical inquiry.	
options in a modeling context. Limit to contexts arising from linear,		
quadratic, exponential, absolute value, and linear piecewise functions.		
Focus 2: Connecting Algebra to Fu	unctions	•
Functions shift the emphasis from a point by-point relationship between two v ordered pairs (where each first element is paired with exactly one second characteristics.	ariables (input/output) to considering an ent element) as an entity with its own features	tire set of and
 14. Given a relation defined by an equation in two variables, identify the graph of the relation as the set of all its solutions plotted in the coordinate plane. Note: The graph of a relation often forms a curve (which could be a line). 15. Define a function as a mapping from one set (called the domain) to another set (called the range) that assigns to each element of the domain exactly one element of the range. a. Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context. Note: If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. b. Relate the domain of a function to its graph and, where applicable, to the quantitative relationship it describes. Limit to linear, quadratic, exponential, and absolute value functions. 	IS2 Demonstrate how sound logical arguments and other processes of mathematics are foundational to its discipline.	
16. Compare and contrast relations and functions represented by equations, graphs, or tables that show related values; determine whether a relation is a function. Explain that a function f is a special kind of relation defined by the equation $y = f(x)$.	DS9 Advance an understanding of the ability of the human intellect to know and the desire of the will to want to know more.	

17. Combine	e different	types of standard fu	inctions to write, evalu	ate, and		
interpret functions in context. Limit to linear, quadratic, exponential, and						
absolute va	lue functio	ons.				
a. Use	arithmetic	c operations to comb	ine different types of s	tandard		
func	tions to w	rite and evaluate fur	nctions. Example: Given	two		
func	tions, one	representing flow ra	ate of water and the oth	her		
repr	esenting e	evaporation of that w	ater, combine the two	functions to		
dete	rmine the	amount of water in	a container at a given t	ime.		
b. Use	function c	omposition to combi	ine different types of st	andard		
func	tions to w	rite and evaluate fur	nctions. <i>Example</i> : Given	the		
follo	wing relat	ionships, determine	what the expression S(T(t))		
repr	esents.					
	Function	Input	Output			
	G	Amount of studying: s	Grade in course: G(s)			
	S	Grade in course: g	Amount of screen time: S(g)			
	Т	Amount of screen time: t	Number of followers: T(t)			
Graphs can	be used t	o obtain exact or app	proximate solutions of e	equations, ine	qualities, and systems of equations and ineq	ualities –
including	systems o	of linear equations in	two variables and syste	ems of linear a	nd quadratic equations (given or obtained b	y using
			techr	nology).		
18. Solve sy	stems con	sisting of linear and/	or quadratic equations	in two	IS1 Explain the nature of rational	
variables gr	aphically,	using technology wh	ere appropriate.		discourse and argument and the	
19. Explain	why the x-	coordinates of the p	oints where the graphs	of the	desirability of precision and deductive	
equations y	= f(x) and	y = g(x) intersect are	e the solutions of the eq	juation f(x) =	certainty which mathematics makes	
g(x).					possible and is not possible to the same	
a. Find	the appro	eximate solutions of a	an equation graphically	, using	degree in other disciplines.	
table	es of value	es, or finding successi	ive approximations, usi	ng		
tech	nology wh	ere appropriate. No	te: Include cases where	f(x) is a	GS3 Have faith in the glory and dignity of	
linea	ar, quadrat	tic, exponential, or al	bsolute value function	and g(x) is	human reason as both a gift from God	
cons	tant or lin	ear.				

20. Graph the solutions to a linear inequality in two variables as a half-plane	and a reflection of Him in whose image	
(excluding the boundary in the case of a strict inequality), and graph the	and likeness we are made.	
solution set to a system of linear inequalities in two variables as the		
intersection of the corresponding half-planes, using technology where		
appropriate.		
Focus 3: Functions		
Functions can be described by using a variety of representations: mapping d	iagrams, function notation (e.g., f(x) = x ²), rea	cursive
definitions, tables, and grap	hs.	
21. Compare properties of two functions, each represented in a different way		
(algebraically, graphically, numerically in tables, or by verbal descriptions).		
Extend from linear to quadratic, exponential, absolute value, and general		
piecewise.	DC2 Share with others the beauty	
22. Define sequences as functions, including recursive definitions, whose	barmony propertion radiance and	
domain is a subset of the integers.	harmony, proportion, radiance, and	
a. Write explicit and recursive formulas for arithmetic and geometric	wholeness present in mathematics.	
sequences and connect them to linear and exponential functions.		
Example: A sequence with constant growth will be a linear function,		
while a sequence with proportional growth will be an exponential		
function.		
Functions that are members of the same family have distinguishing attributes (structure) common to all functions within th	at family.
23. Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, $kf(x)$, $f(kx)$, and $f(x + x)$		
k) for specific values of k (both positive and negative); find the value of k given the		
graphs. Experiment with cases and illustrate an explanation of the effects on the		
graph using technology as appropriate.		
24. Distinguish between situations that can be modeled with linear functions		
and those that can be modeled with exponential functions.		
a. Show that linear functions grow by equal differences over equal		
intervals, while exponential functions grow by equal factors over		
equal intervals.		
b. Define linear functions to represent situations in which one quantity		
changes at a constant rate per unit interval relative to another.		

c. Define exponential functions to represent situations in which a		
quantity grows or decays by a constant percent rate per unit interval		
relative to another.		
25. Construct linear and exponential functions, including arithmetic and	DS2 Share with others the beauty,	
geometric sequences, given a graph, a description of a relationship, or two	harmony, proportion, radiance, and	
input-output pairs (include reading these from a table).	wholeness present in mathematics.	
26. Observe, using graphs and tables, that a quantity increasing exponentially		
eventually exceeds a quantity increasing linearly, quadratically, or (more		
generally) as a polynomial function.		
27. Interpret the parameters in a linear or exponential function in terms of a		
context.		
Functions can be represented graphically and key features of the graphs, incl	uding zeros, intercepts, and, when relevant,	rate of
change and maximum/minimum values, can be associated with and interprete	d in terms of the equivalent symbolic repres	entation.
28. For a function that models a relationship between two quantities,		
interpret key features of graphs and tables in terms of the quantities, and		
sketch graphs showing key features given a verbal description of the		
relationship. Note: Key features include: intercepts; intervals where the		
function is increasing, decreasing, positive, or negative; maximums and	GS4 Explain how mathematics in its	
minimums; symmetries; and end behavior. Extend from relationships that	reflection of the good, true, and beautiful	
can be represented by linear functions to quadratic, exponential, absolute	reveals qualities of being and the	
value, and linear piecewise functions.	presence of God.	
29. Calculate and interpret the average rate of change of a function		
(presented symbolically or as a table) over a specified interval. Estimate the	IS2 Demonstrate how sound logical	
rate of change from a graph. Limit to linear, quadratic, exponential, and	arguments and other processes of	
absolute value functions.	mathematics are foundational to its	
30. Graph functions expressed symbolically and show key features of the	discipline.	
graph, by hand in simple cases and using technology for more complicated		
cases.		
a. Graph linear and quadratic functions and show intercepts, maxima,		
and minima.		

b. Graph piecewise-defined function	ons, including step f	unctions and		
absolute value functions.				
c. Graph exponential functions, sh	owing intercepts an	d end behavior.		
Functions model a wide variety of	real situations and	can help students ur	nderstand the processes of making and chan	ging
assumptions	s, assigning variables	s, and finding solutio	ns to contextual problems.	1
31. Use the mathematical modeling cyc	le to solve real-wor	ld problems	DS3 Advocate for the pursuit of	
involving linear, quadratic, exponential,	, absolute value, and	d linear piecewise	understanding for its own sake and the	
functions. (DOB note: Degree of master	ry depends on termi	nal courses)	intrinsic value or discovery of the true	
			and the beautiful often at the	
			requirement of great sacrifice, discipline,	
			and effort.	
	Data Analysis,	, Statistics, and Pr	robability	
	Focus 1	: Quantitative Litera	су	
Mathematical and statis	tical reasoning abou	it data can be used t	o evaluate conclusions and assess risks	
32. Use mathematical and statistical rea	asoning with bivaria	te categorical data	IS8 Explain how fundamental questions	
in order to draw conclusions and assess	s risk.		of values, common sense, and religious	
Example: In a clinical trial comparing th	e effectiveness of flu	u shots A and B, 21	and human truths and experiences are	
subjects in treatment group A avoided g	getting the flu while	29 contracted it.	beyond the scope of mathematical	
In group B, 12 avoided the flu while 13 o	contracted it. Discus	s which flu shot	inquiry and its syllogisms.	
appears to be more effective in reducing	g the chances of con	tracting the flu.		
Possible answer: Even though more peo	ple in group A avoid	led the flu than in		
group B, the proportion of people avoid	ling the flu in group	B is greater than		
the proportion In group A, which sugges	sts that treatment B	may be more		
effective in lowering the risk of getting	the flu.	,		
Contracted Flu	Did Not Contract Flu]		
Flu Shot A 29	21			
Flu Shot B 13	12			
Total 42	33			

Making and defending informed, databased decisions is a characteristic of a quantitatively literate person.			
33. Design and carry out an investigation to determine whether there	IS3 Recognize how mathematical		
appears to be an association between two categorical variables, and write a	arguments and processes can be		
persuasive argument based on the results of the investigation.	extrapolated to other areas of study,		
Example: Investigate whether there appears to be an association between	including theology and philosophy.		
successfully completing a task in a given length of time and listening to music			
while attempting the task. Randomly assign some students to listen to music	GS4 Explain how mathematics in its		
while attempting to complete the task and others to complete the task	reflection of the good, true, and beautiful		
without listening to music. Discuss whether students should listen to music	reveals qualities of being and the		
while studying, based on that analysis.	presence of God.		
Focus 2: Visualizing and Summarizi	ing Data		
Data arise from a context and come in two types: quantitative (continuous or d	discrete) and categorical. Technology can be	used to	
"clean" and organize data, including very large data sets, into a useful and mana	ageable structure—a first step in any analys	is of data	
34. Distinguish between quantitative and categorical data and between the	DS8 Exhibit humility at knowing that as a		
techniques that may be used for analyzing data of these two types.	human being man can only grasp a		
Example: The color of cars is categorical and so is summarized by frequency	portion of the truths of the universe.		
and proportion for each color category, while the mileage on each car's			
odometer is quantitative and can be summarized by the mean.			
The association between two categorical variables is typically represented by	/ using two-way tables and segmented bar g	raphs.	
35. Analyze the possible association between two categorical variables.	IS5 Recognize personal bias in inquiry and		
a. Summarize categorical data for two categories in two-way frequency	articulate why inquiry should be		
tables and represent using segmented bar graphs.	undertaken in a fair and independent		
b. Interpret relative frequencies in the context of categorical data	manner.		
(including joint, marginal, and conditional relative frequencies).			
c. Identify possible associations and trends in categorical data.			
Data analysis techniques can be used to develop models of contextual situation	ns and to generate and evaluate possible sol	utions to	
real problems involving those contexts.			
36. Generate a two-way categorical table in order to find and evaluate	IS8 Explain how fundamental questions		
solutions to real-world problems.	of values, common sense, and religious		
a. Aggregate data from several groups to find an overall association	and human truths and experiences are		
between two categorical variables.			

b. Recognize and e	xplore situations where the association between two bles is reversed when a third variable is considered	beyond the scope of mathematical	
(Simpson's Para	dox).		
Example: In a ce	rtain city, Hospital 1 has a higher fatality rate than		
Hospital 2. But v	when considering mildly-injured patients and severely-		
injured patients	as separate groups, Hospital 1 has a lower fatality		
rate among both	n groups than Hospital 2, since Hospital 1 is a Level 1		
Trauma Center.	Thus, Hospital 1 receives most of the severely injured		
patients who are	e less likely to survive overall but have a better chance		
of surviving in H	ospital 1 than they would in Hospital 2.		
Focus	3: Statistical Inference (Note: There are no Algebra I w	ith Probability standards in Focus 3)	
	Focus 4: Probability		
Two events are indepen	ndent if the occurrence of one event does not affect the	e probability of the other event. Determining	, whether
	two events are independent can be used for finding an	d understanding probabilities.	1
37. Describe events as s	ubsets of a sample space (the set of outcomes) using	DS5 Exhibit habits of thinking	
characteristics (or categ	ories) of the outcomes, or as unions, intersections, or	quantitatively and in an orderly manner,	
complements of other e	vents ("or," "and," "not").	especially through immersion in	
38. Explain whether two events, A and B, are independent, using two-way		mathematical observations found within	
tables or tree diagrams		creation.	
Conditional probabiliti	es – that is, those probabilities that are "conditioned" b	y some known information – can be comput	ted from
data organiz	ed in contingency tables. Conditions or assumptions m	ay affect the computation of a probability.	
39. Compute the condit	ional probability of event A given event B, using two-		
way tables or tree diagr	ams.		
40. Understand that tw	p events A and B are independent if the probability of	DS5 Exhibit habits of thinking	
A and B occurring toget	her is the product of their probabilities, and use this	quantitatively and in an orderly manner.	
characterization to determine if they are independent.		especially through immersion in	
41. Explain why the conditional probability of A given B is the fraction of B's		mathematical observations found within	
outcomes that also belong to A, and interpret the answer in context.		creation.	
Example: the probability of drawing a king from a deck of cards, given that it			
is a face card, is $\frac{4/52}{4}$, w	which is $\frac{1}{2}$.		
12/52	3		

Geometry and Measurement		
42. Find the point on a directed line segment between two given points that partitions the segment in a given ratio. (DOB)	DS6 Propose how mathematical objects or proofs (such as the golden mean, the	
43. Give an informal argument for the formulas for the circumference of a circle; area of a circle; and volume of a cylinder, pyramid, and cone. Use dissection arguments, Cavalieri's principle, and informal limit arguments. (DOB)	Fibonacci numbers, the musical scale, and geometric proofs) suggest divine origin.	
Standard	Cardinal Newman	Date
---	--	------------
		Taught
Number Properties and Operation	ons (NAEP)	
Number and Quantity		
Together, irrational numbers and rational numbers complete the real number	r system, representing all points on the nui	nber line,
while there exist numbers beyond the real numbers	s called complex numbers.	
1. Identify numbers written in the form <i>a</i> + <i>bi</i> , where <i>a</i> and <i>b</i> are real	IS7 Explain man's limitations of	
numbers and $i^2 = -1$, as complex numbers.	understanding and uncovering all	
a. Add, subtract, and multiply complex numbers using the commutative,	mathematical knowledge.	
associative, and distributive properties.		
b. Find the conjugate of a complex number; use conjugates to find		
moduli and quotients of complex numbers. (DOB)		
Matrices are a useful way to represent information.		
2. Use matrices to represent and manipulate data.		
3. Multiply matrices by scalars to produce new matrices.	DS2 Advocato for the pursuit of	
4. Add, subtract, and multiply matrices of appropriate dimensions.	understanding for its own sake and the	
5. Describe the roles that zero and identity matrices play in matrix addition	intrinsic value or discovery of the true	
and multiplication, recognizing that they are similar to the roles of 0 and 1 in	and the beautiful often at the	
the real numbers.	requirement of great sacrifice	
a. Find the additive and multiplicative inverses of square matrices, using	discipline and effort	
technology as appropriate.		
b. Explain the role of the determinant in determining if a square matrix		
has a multiplicative inverse		

Algebra and Functions		
Focus 1: Algebra		
Expressions can be rewritten in equivalent forms by using algebraic properties	, including properties of addition, multiplic	ation, and
exponentiation, to make different characterist	ics or features visible	
6. Factor polynomials using common factoring techniques, and use the	IS1 Explain the nature of rational	
factored form of a polynomial to reveal the zeros of the function it defines.	discourse and argument and the	
7. Prove polynomial identities and use them to describe numerical	desirability of precision and deductive	
relationships.	certainty which mathematics makes	
Example: The polynomial identity $1 - x^n = (1 - x)(1 + x + x^2 + x^3 + + x^{n-1} + x^n)$	possible and is not possible to the same	
can be used to find the sum of the first n terms of a geometric sequence with	degree in other disciplines.	
common ratio x by dividing both sides of the identity by (1 - x).		
Finding solutions to an equation, inequality, or system of equations or inequ	alities requires the checking of candidate s	olutions,
whether generated analytically or graphically, to ensure that solutions are	found and that those found are not extrar	neous.
8. Explain why extraneous solutions to an equation may arise and how to	DS4 Exhibit appreciation for the	
check to be sure that a candidate solution satisfies an equation. Extend to	ongoing nature of mathematical	
radical equations.	inquiry.	
The structure of an equation or inequality (including, but not limited to, one-	variable linear and quadratic equations, ine	qualities,
and systems of linear equations in two variables) can be purposefully analyzed (with and without technology) to determine an		
efficient strategy to find a solution, if one exists, and	then to justify the solution.	
9. For exponential models, express as a logarithm the solution to $ab^{ct} = d$,		
where <i>a</i> , <i>c</i> , and <i>d</i> are real numbers and the base <i>b</i> is 2 or 10; evaluate the		
logarithm using technology to solve an exponential equation.		
Expressions, equations, and inequalities can be used to analyze and make pred	ictions, both within mathematics and as ma	athematics
is applied in different contexts—in particular, contexts that arise in relation	n to linear, quadratic, and exponential situa	ations.
10. Create equations and inequalities in one variable and use them to solve	IS2 Demonstrate how sound logical	
problems. Extend to equations arising from polynomial, trigonometric (sine	arguments and other processes of	
and cosine), logarithmic, radical, and general piecewise functions.	mathematics are foundational to its	
	discipline.	
11. Solve quadratic equations with real coefficients that have complex		
solutions.		

12. Solve simple equations involving exponential, radical, logarithmic, and		
trigonometric functions using inverse functions.		
13. Create equations in two or more variables to represent relationships	IS4 Explain how it is possible to	
between quantities; graph equations on coordinate axes with labels and	mentally abstract and construct	
scales and use them to make predictions. Extend to polynomial,	mathematical objects from direct	
trigonometric (sine and cosine), logarithmic, reciprocal, radical, and general	observations of reality and how one's	
piecewise functions.	perception of that reality is important	
	to what one is doing	
Focus 2: Connecting Algebra to Fu	unctions	
Graphs can be used to obtain exact or approximate solutions of equations, ine	qualities, and systems of equations and ine	qualities—
including systems of linear equations in two variables and systems of linear a	ind quadratic equations (given or obtained	by using
technology).		
14. Explain why the x-coordinates of the points where the graphs of the		
equations $y = f(x)$ and $y = g(x)$ intersect are the solutions of the equation $f(x) =$		
<i>g(x)</i> .		
a. Find the approximate solutions of an equation graphically, using		
tables of values, or finding successive approximations, using		
technology where appropriate. Extend to cases where <i>f</i> (<i>x</i>) and/or <i>g</i> (<i>x</i>)		
are polynomial, trigonometric (sine and cosine), logarithmic, radical,		
and general piecewise functions.		
Focus 3: Functions		
Functions can be described by using a variety of representations: mapping di	agrams, function notation (e.g., f(x) = x2),	recursive
definitions, tables, and grap	hs.	T
15. Compare properties of two functions each represented in a different way		
(algebraically, graphically, numerically in tables, or by verbal descriptions).		
Extend to polynomial, trigonometric (sine and cosine), logarithmic, radical,		
and general piecewise functions.		
Functions that are members of the same family have distinguishing attributes	structure) common to all functions within	that family
16. Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, $k \cdot f(x)$, $f(k \cdot x)$	DS9 Advance an understanding of the	
x), and $f(x + k)$ for specific values of k (both positive and negative); find the	ability of the human intellect to know	
value of k given the graphs. Experiment with cases and illustrate an		

explanation of the effects on the graph using technology. Extend to	and the desire of the will to want to	
polynomial, trigonometric (sine and cosine), logarithmic, reciprocal, radical,	know more.	
and general piecewise functions.		
Functions can be represented graphically, and key features of the graphs, inc	luding zeros, intercepts, and, when relevar	it, rate of
change and maximum/minimum values, can be associated with and interprete	d in terms of the equivalent symbolic repre	esentation.
17. For a function that models a relationship between two quantities,	DS2 Share with others the beauty,	
interpret key features of graphs and tables in terms of the quantities, and	harmony, proportion, radiance, and	
sketch graphs showing key features given a verbal description of the	wholeness present in mathematics.	
relationship. Note: Key features include intercepts; intervals where the		
function is increasing, decreasing, positive, or negative; maximums and		
minimums; symmetries (including even and odd); end behavior; and		
periodicity. Extend to polynomial, trigonometric (sine and cosine),		
logarithmic, reciprocal, radical, and general piecewise functions.		
18. Relate the domain of a function to its graph and, where applicable, to the		
quantitative relationship it describes. Extend to polynomial, trigonometric		
(sine and cosine), logarithmic, reciprocal, radical, and general piecewise		
functions.		
19. Calculate and interpret the average rate of change of a function		
(presented symbolically or as a table) over a specified interval. Estimate the		
rate of change from a graph. Extend to polynomial, trigonometric (sine and		
cosine), logarithmic, reciprocal, radical, and general piecewise functions.		
20. Graph functions expressed symbolically and show key features of the		
graph, by hand in simple cases and using technology for more complicated		
cases. Extend to polynomial, trigonometric (sine and cosine), logarithmic,		
reciprocal, radical, and general piecewise functions.		
a. Graph polynomial functions expressed symbolically, identifying zeros		
when suitable factorizations are available, and showing end behavior.		
b. Graph sine and cosine functions expressed symbolically, showing		
period, midline, and amplitude.		
c. Graph logarithmic functions expressed symbolically, showing		
intercepts and end behavior.		

d. Graph reciprocal functions expressed symbolically, identifying		
horizontal and vertical asymptotes.		
e. Graph square root and cube root functions expressed symbolically.		
f. Compare the graphs of inverse functions and the relationships		
between their key features, including but not limited to quadratic,		
square root, exponential, and logarithmic functions.		
21. Explain how the unit circle in the coordinate plane enables the extension		
of trigonometric functions to all real numbers, interpreted as radian		
measures of angles traversed counterclockwise around the unit circle,		
building on work with non-right triangle trigonometry.		
Functions model a wide variety of real situations and can help students ur	nderstand the processes of making and cha	nging
assumptions, assigning variables, and finding solutio	ns to contextual problems.	
22. Use the mathematical modeling cycle to solve real-world problems	IS8 Explain how fundamental questions	
involving polynomial, trigonometric (sine and cosine), logarithmic, radical,	of values, common sense, and religious	
and general piecewise functions, from the simplification of the problem	and human truths and experiences are	
through the solving of the simplified problem, the interpretation of its	beyond the scope of mathematical	
solution, and the checking of the solution's feasibility.	inquiry and its syllogisms.	
Data Analysis, Statistics, and Pr	obability	
Focus 1: Quantitative Litera	су	
Mathematical and statistical reasoning about data can be used to	o evaluate conclusions and assess risks.	
23. Use mathematical and statistical reasoning about normal distributions to	DS8 Exhibit humility at knowing that as	
draw conclusions and assess risk; limit to informal arguments.	a human being man can only grasp a	
Example: If candidate A is leading candidate B by 2% in a poll which has a	portion of the truths of the universe.	
margin of error of less than 3%, should we be surprised if candidate B wins the	GS4 Explain how mathematics in its	
election?	reflection of the good, true, and	
	beautiful reveals qualities of being and	
	the presence of God.	

Making and defending informed data-based decisions is a characteristic of a quantitatively literate person.		
24. Design and carry out an experiment or survey to answer a question of IS3 Recognize how mathematical		
interest, and write an informal persuasive argument based on the results.	arguments and processes can be	
Example: Use the statistical problem-solving cycle to answer the question, "Is	extrapolated to other areas of study,	
there an association between playing a musical instrument and doing well in	including theology and philosophy.	
mathematics?"	GS3 Have faith in the glory and dignity	
	of human reason as both a gift from	
	God and a reflection of Him in whose	
	image and likeness we are made.	
Focus 2: Visualizing and Summariz	ing Data	
Distributions of quantitative data (continuous or discrete) in one variable sl	nould be described in the context of the da	ta with
respect to what is typical (the shape, with appropriate measures of center and	variability, including standard deviation) a	nd what is
not (outliers), and these characteristics can be used to compare two o	r more subgroups with respect to a variabl	e.
25. From a normal distribution, use technology to find the mean and standard	IS6 Evaluate the ongoing nature of	
deviation and estimate population percentages by applying the empirical	mathematical inquiry, its	
rule.	inexhaustibility, and its openness to the	
a. Use technology to determine if a given set of data is normal by	infinite.	
applying the empirical rule.		
b. Estimate areas under a normal curve to solve problems in context,		
using calculators, spreadsheets, and tables as appropriate.		
Focus 3: Statistical Inference	ce	
Study designs are of three main types: sample survey, expe	eriment, and observational study.	
26. Describe the purposes of and differences among sample surveys,	IS5 Recognize personal bias in inquiry	
experiments, and observational studies; explain how randomization relates to	and articulate why inquiry should be	
each.	undertaken in a fair and independent	
Examples: random assignment in experiments, random selection in surveys	manner.	
and observational studies.		

The role of randomization is different in randomly selecting samples and in randomly assigning subjects to experimental treatment		
groups.		
27. Distinguish between a statistic and a parameter and use statistical		
processes to make inferences about population parameters based on		
statistics from random samples from that population.		
28. Describe differences between randomly selecting samples and randomly		
assigning subjects to experimental treatment groups in terms of inferences	DS7 Exhibit appreciation for the process	
drawn regarding a population versus regarding cause and effect.	of discovering meanings and truths	
Example: Data from a group of plants randomly selected from a field allows	existing within the solution of the	
inference regarding the rest of the plants in the field, while randomly	problem and not just arriving at an	
assigning each plant to one of two treatments allows inference regarding	answer.	
differences in the effects of the two treatments. If the plants were both		
randomly selected and randomly assigned, we can infer that the difference in		
effects of the two treatments would also be observed when applied to the rest		
of the plants in the field.		
The scope and validity of statistical inferences are dependent on the	role of randomization in the study design	
29. Explain the consequences, due to uncontrolled variables, of non-	GS2 Develop lines of inquiry to	
randomized assignment of subjects to groups in experiments.	understand why things are true and	
Example: Students are studying whether or not listening to music while	why they are false.	
completing mathematics homework improves their quiz scores. Rather than		
assigning students to either listen to music or not at random, they simply		
observe what the students do on their own and find that the music-listening		
group has a higher mean quiz score. Can they conclude that listening to music		
while studying is likely to raise the quiz scores of students who do not already		
listen to music? What other factors may have been responsible for the		
observed difference in mean quiz scores?		
Bias, such as sampling, response, or nonresponse bias, may occur in surveys	, yielding results that are not representative	e of the
population of interest.		
30. Evaluate where bias, including sampling, response, or nonresponse bias,	IS5 Recognize personal bias in inquiry	
may occur in surveys, and whether results are representative of the	and articulate why inquiry should be	
population of interest.		

Example: Selecting students eating lunch in the cafeteria to participate in a	undertaken in a fair and independent	
survey may not accurately represent the student body, as students who do not	manner.	
eat in the cafeteria may not be accounted for and may have different		
opinions, or students may not respond honestly to questions that may be		
embarrassing, such as how much time they spend on homework.		
The larger the sample size, the less the expected variability in the s	ampling distribution of a sample statistic.	
31. Evaluate the effect of sample size on the expected variability in the	GS1 Demonstrate the mental habits of	
sampling distribution of a sample statistic.	precise, determined, careful, and	
a. Simulate a sampling distribution of sample means from a population	accurate questioning, inquiry, and	
with a known distribution, observing the effect of the sample size on	reasoning in the pursuit of	
the variability.	transcendent truths.	
b. Demonstrate that the standard deviation of each simulated sampling		
distribution is the known standard deviation of the population divided		
by the square root of the sample size.		
The sampling distribution of a sample statistic formed from repeated samples	for a given sample size drawn from a popu	lation can
be used to identify typical behavior for that statistic. Examining several such	sampling distributions leads to estimating	a set of
plausible values for the population parameter, using the margin of error as	a measure that describes the sampling var	iability.
32. Produce a sampling distribution by repeatedly selecting samples of the		
same size from a given population or from a population simulated by		
bootstrapping (resampling with replacement from an observed sample). Do		
initial examples by hand, then use technology to generate a large number of		
samples.	DS5 Exhibit habits of thinking	
a. Verify that a sampling distribution is centered at the population mean	quantitatively and in an orderly	
and approximately normal if the sample size is large enough.	manner, especially through immersion	
b. Verify that 95% of sample means are within two standard deviations	in mathematical observations found	
of the sampling distribution from the population mean.	within creation.	
c. Create and interpret a 95% confidence interval based on an observed		
mean from a sampling distribution.		
33. Use data from a randomized experiment to compare two treatments;		
limit to informal use of simulations to decide if an observed difference in the		

randomization alone, thus implying that the difference between the	
treatment groups is meaningful.	
Example: Fifteen students are randomly assigned to a treatment group that	
listens to music while completing mathematics homework and another 15 are	
assigned to a control group that does not, and their means on the next quiz	
are found to be different. To test whether the differences seem significant, all	
the scores from the two groups are placed on index cards and repeatedly	
shuffled into two new groups of 15 each, each time recording the difference in	
the means of the two groups. The differences in means of the treatment and	
control groups are then compared to the differences in means of the mixed	
groups to see how likely it is to occur.	

Geometry and Measurement		
Focus 1: Measurement		
When an object is the image of a known object under a similarity transforma	tion, a length, area, or volume on the imag	e can be
computed by using proportional rela	ationships.	
34. Define the radian measure of an angle as the constant of proportionality		
of the length of an arc it intercepts to the radius of the circle; in particular, it		
is the length of the arc intercepted on the unit circle.		
Focus 2: Transformations (Note: There are no Algebra II wi	th Statistics standards in Focus 2)	
Focus 3: Geometric Argument, Reasoning, and Proof (Note: There are no	Algebra II with Statistics standards in Focu	us 3)
Focus 4: Solving Applied Problems and Modeling in Geometry		
Recognizing congruence, similarity, symmetry, measurement opportunities, and other geometric ideas, including right triangle		
trigonometry in real-world contexts, provides a means of building understandin	ng of these concepts and is a powerful tool	for solving
problems related to the physical world in	n which we live	
35. Choose trigonometric functions (sine and cosine) to model periodic		
phenomena with specified amplitude, frequency, and midline.	DS1 Display a sense of wonder about	
36. Prove the Pythagorean identity $sin^2(\vartheta) + cos^2(\vartheta) = 1$ and use it to	mathematical relationships, especially	
calculate trigonometric ratios.	mathematical certitude which is	
37. Derive and apply the formula $A = \frac{1}{2} \cdot ab \cdot sin(C)$ for the area of a triangle by	independent of human opinion.	
drawing an auxiliary line from a vertex perpendicular to the opposite side,		
extending the domain of sine to include right and obtuse angles.		
38. Derive and apply the Law of Sines and the Law of Cosines to find unknown	DS6 Propose how mathematical objects	
measurements in right and non-right triangles. Extend the domain of sine and	or proofs (such as the golden mean, the	
cosine to include right and obtuse angles. Examples: surveying problems,	Fibonacci numbers, the musical scale,	
resultant forces.	and geometric proofs) suggest divine	
	origin.	

Mathematical Modeling

Standard	Cardinal Newman	Date
		Completed
Modeling		
Mathematical modeling and statistical problem-solving are extensive, cyclical	processes that can be used to answer sig	gnificant real-
world problems.		
1. Use the full Mathematical Modeling Cycle or Statistical Problem-Solving	GS3 Have faith in the glory and	
Cycle to answer a real-world problem of particular student interest,	dignity of human reason as both a	
incorporating standards from across the course.	gift from God and a reflection of Him	
Examples: Use a mathematical model to design a three-dimensional structure	in whose image and likeness we are	
and determine whether particular design constraints are met; to decide under	made.	
what conditions the purchase of an electric vehicle will save money; to predict		
the extent to which the level of the ocean will rise due to the melting polar ice	IS8 Explain how fundamental	
caps; or to interpret the claims of a statistical study regarding the economy.	questions of values, common sense,	
	and religious and human truths and	
	experiences are beyond the scope of	
	mathematical inquiry and its	
	syllogisms.	
	DSQ Advance an understanding of	
	the ability of the human intellect to	
	know and the desire of the will to	
	want to know more	
Financial Planning and Management		
Mathematical models involving growth and decay are useful in solving real-world problems involving borrowing and investing;		
spreadsheets are a frequently-used and powerful tool to assist with modeling financial situations.		

2. Use elements of the Mathematical Modeling Cycle to solve real-world problems involving finances.	IS1 Explain the nature of rational discourse and argument and the desirability of precision and deductive certainty which mathematics makes possible and is not possible to the same degree in other disciplines.	
3. Organize and display financial information using arithmetic sequences to represent simple interest and straight-line depreciation.		
 4. Organize and display financial information using geometric sequences to represent compound interest and proportional depreciation, including periodic (yearly, monthly, weekly) and continuous compounding. a. Explain the relationship between annual percentage yield (APY) and annual percentage rate (APR) as values for r in the formulas A=P(1+r)^t and A=Pe^{rt}. 	DS7 Exhibit appreciation for the process of discovering meanings and truths existing within the solution of the problem and not just arriving at an answer.	
5. Compare simple and compound interest, and straight-line and proportional depreciation		
6. Investigate growth and reduction of credit card debt using spreadsheets, including variables such as beginning balance, payment structures, credits, interest rates, new purchases, finance charges, and fees.	GS1 Demonstrate the mental habits of precise, determined, careful, and	
 7. Compare and contrast housing finance options including renting, leasing to purchase, purchasing with a mortgage, and purchasing with cash. a. Research and evaluate various mortgage products available to consumers. b. Compare monthly mortgage payments for different terms, interest rates, and down payments. c. Analyze the financial consequence of buying a home (mortgage payments vs. potentially increasing resale value) versus investing the more super durban mention a security of the last. 	accurate questioning, inquiry, and reasoning in the pursuit of transcendent truths. DS8 Exhibit humility at knowing that as a human being man can only grasp a portion of the truths of the universe.	
expensive option.		

8. Investigate the advantages and disadvantages of various means of paying for an automobile, including leasing, purchasing by cash, and purchasing by loan	
Design in Three Dimensio	ins
Two- and three-dimensional representations, coordinates systems, geometrie	c transformations, and scale models are useful tools in
planning, designing, and constructing solutions	to real-world problems.
9. Use the Mathematical Modeling Cycle to solve real-world problems	DS2 Share with others the beauty,
involving the design of three-dimensional objects.	harmony, proportion, radiance, and
	wholeness present in mathematics.
10. Construct a two-dimensional visual representation of a three-dimensional	IS4 Explain how it is possible to
object or structure.	mentally abstract and construct
a. Determine the level of precision and the appropriate tools for taking	mathematical objects from direct
the measurements in constructing a two-dimensional visual	observations of reality and how
representation of a three-dimensional object or structure.	one's perception of that reality is
b. Create an elevation drawing to represent a given solid structure, using	important to what one is doing.
technology where appropriate.	
c. Determine which measurements cannot be taken directly and must be	2
calculated based on other measurements when constructing a two-	
dimensional visual representation of a three-dimensional object or	
structure.	
d. Determine an appropriate means to visually represent an object or	
structure, such as drawings on paper or graphics on computer screens	
11. Plot coordinates on a three-dimensional Cartesian coordinate system and	DS5 Exhibit habits of thinking
use relationships between coordinates to solve design problems.	quantitatively and in an orderly
a. Describe the features of a three-dimensional Cartesian coordinate	manner, especially through
system and use them to graph points.	immersion in mathematical
b. Graph a point in space as the vertex of a right prism drawn in the	observations found within creation.
appropriate octant with edges along the x, y, and z axes.	
c. Find the distance between two objects in space given the coordinates	
of each.	

Examples: Determine whether two aircraft are flying far enough apart		
to be safe; find how long a zipline cable would need to be to connect		
two platforms at different heights on two trees.		
d. Find the midpoint between two objects in space given the coordinates		
of each.		
Example: If two asteroids in space are traveling toward each other at		
the same speed, find where they will collide.		
12. Use technology and other tools to explore the results of simple		
transformations using three dimensional coordinates including translations		
in the x y and/or z directions: rotations of 90° 180° or 270° about the x y		
and z axes: reflections over the xy, yz, and xy planes: and dilations from the		
origin		
Example: Given the coordinates of the corners of a room in a house find the		
coordinates of the same room facing a different direction		
13 Create a scale model of a complex three-dimensional structure based on	IS4. Explain how it is possible to	
absorved measurements and indirect measurements using translations	montally abstract and construct	
reflections, relations, and dilations of its components	methany abstract and construct	
Example: Develop a plan for a bridge structure using geometric properties of	absorvations of reality and how	
Example: Develop a plan for a bridge structure using geometric properties of	observations of reality and now	
its parts to determine unknown measures and represent the plan in three	one's perception of that reality is	
dimensions.	important to what one is doing.	
Creating Functions to Model Change in the Er	nvironment and Society	
Functions can be used to represent general trends in conditions that change	over time and to predict future condition	ns based on
present observations.		1
14. Use elements of the Mathematical Modeling Cycle to make predictions	GS4 Explain how mathematics in its	
based on measurements that change over time, including motion, growth,	reflection of the good, true, and	
decay, and cycling.	beautiful reveals qualities of being	
15. Use regression with statistical graphing technology to determine an	and the presence of God.	
equation that best fits a set of bivariate data, including nonlinear patterns.		
<i>Examples: global temperatures, stock market values, hours of daylight, animal</i>	IS3 Recognize how mathematical	
population, carbon dating measurements, online streaming viewership	arguments and processes can be	

a. Create a scatter plot with a sufficient number of data points to predict	extrapolated to other areas of study,
b Describe the overall relationship between two quantitative variables	including theology and philosophy.
(increase, decrease, linearity, concavity, extrema, inflection) or	DS6 Propose how mathematical
pattern of change. c. Make a prediction based upon patterns.	objects or proofs (such as the golden
	mean, the Fibonacci numbers, the
	musical scale, and geometric proofs)
	suggest divine origin.
16. Create a linear representation of non-linear data and interpret solutions,	IS6 Evaluate the ongoing nature of
using technology and the process of linearization with logarithms.	mathematical inquiry, its
	inexhaustibility, and its openness to
	the infinite.
Modeling to Interpret Statistica	al Studies
Statistical studies allow a conclusion to be drawn about a population that is too	b large to survey completely or about cause and effect
in an experiment.	
17. Use the Statistical Problem Solving Cycle to answer real-world questions.	IS2 Demonstrate how sound logical
	arguments and other processes of
	mathematics are foundational to its
10. Construct a nucleability distribution based on ampirical absorptions of a	CS2 Develop lines of inquiry to
variable	GS2 Develop lines of inquiry to
Frample: Record the number of student absences in class each day and find	why they are false
the probability that each number of students will be absent on any future day	with they are taise.
a Estimate the probability of each value for a random variable based on	
empirical observations or simulations, using technology.	
b. Represent a probability distribution by a relative frequency histogram	
and/or a cumulative relative frequency graph.	
c. Find the mean, standard deviation, median, and interquartile range of	
a probability distribution and make long-term predictions about	
future possibilities. Determine which measures are most appropriate	
based upon the shape of the distribution.	

19. Construct a sampling distribution for a random event or random sample.	DS1 Display a sense of wonder about
Examples: How many times do we expect a fair coin to come up "heads" in	mathematical relationships, especially
100 flips, and on average how far away from this expected value do we expect	mathematical certitude which is
to be on a specific set of flips? What do we expect to be the average height for	independent of human opinion.
a random sample of students in a local high school given the mean and	
standard deviation of the heights of all students in the high school?	DS4 Exhibit appreciation for the
a. Use the binomial theorem to construct the sampling distribution for	ongoing nature of mathematical
the number of successes in a binary event or the number of positive	inquiry.
responses to a yes/no question in a random sample.	
b. Use the normal approximation of a proportion from a random event	
or sample when conditions are met.	
c. Use the central limit theorem to construct a normal sampling	
distribution for the sample mean when conditions are met.	
d. Find the long-term probability of a given range of outcomes from a	
random event or random sample.	
20. Perform inference procedures based on the results of samples and	IS7 Explain man's limitations of
experiments.	understanding and uncovering all
a. Use a point estimator and margin of error to construct a confidence	mathematical knowledge.
interval for a proportion or mean.	
b. Interpret a confidence interval in context and use it to make strategic	
decisions.	
Example: short-term and long-term budget projections for a business	
c. Perform a significance test for null and alternative hypotheses.	
d. Interpret the significance level of a test in the context of error	
probabilities, and use the results to make strategic decisions.	
Example: How do you reduce the rate of human error on the floor of a	
manufacturing plant?	
21. Critique the validity of reported conclusions from statistical studies in	IS5 Recognize personal bias in inquiry
terms of bias and random error probabilities.	and articulate why inquiry should be
	undertaken in a fair and independent
	manner.

22. Conduct a randomized study on a topic of student interest (sample or	DS3 Advocate for the pursuit of
experiment) and draw conclusions based upon the results.	understanding for its own sake and
Example: Record the heights of thirty randomly selected students at your high	the intrinsic value or discovery of the
school. Construct a confidence interval to estimate the true average height of	true and the beautiful often at the
students at your high school. Question whether or not this data provides	requirement of great sacrifice,
significant evidence that your school's average height is higher than the	discipline, and effort.
known national average, and discuss error probabilities.	

Applications of Finite Mathematics

Standard	Cardinal Newman	Date
		Completed
Logical Reasoning		
The validity of a statement or argument can be determined using th	e models and language of first order log	gic.
1. Represent logic statements in words, with symbols, and in truth tables,		
including conditional, biconditional, converse, inverse, contrapositive, and		
quantified statements.		
2. Represent logic operations such as and, or, not, nor, and x or (exclusive or)		
in words, with symbols, and in truth tables		
3. Use truth tables to solve application-based logic problems and determine		
the truth value of simple and compound statements including negations and	M712, GS2	
implications.	Develop lines of inquiry to discover	
a. Determine whether statements are equivalent and construct	why things are true and why they are	
equivalent statements.	false.	
Example: Show that the contrapositive of a statement is its logical		
equivalent.		
4. Determine whether a logical argument is valid or invalid, using laws of logic		
such as the law of syllogism and the law of detachment.		
a. Determine whether a logical argument is a tautology or a		
contradiction.		
5. Prove a statement indirectly by proving the contrapositive of the statement		
Advanced Counting		
Complex counting problems can be solved efficiently u	ising a variety of techniques.	
6. Use multiple representations and methods for counting objects and	M712, DS7	
developing more efficient counting techniques. Note: Representations and	Exhibit appreciation for the process	
	of discovering meanings and truths	

methods may include tree diagrams, lists, manipulatives, overcounting methods, recursive patterns, and explicit formulas.	existing within the solution of the problem and not just arriving at the answer	
7. Develop and use the Fundamental Counting Principle for counting independent and dependent events. a. Use various counting models (including tree diagrams and lists) to identify the distinguishing factors of a context in which the Fundamental Counting Principle can be applied.	M.712, IS2 Demonstrate how sound logical arguments and other processes of mathematics are foundational to its discipline.	
 8. Using application-based problems, develop formulas for permutations, combinations, and combinations with repetition and compare student-derived formulas to standard representations of the formulas. <i>Example: If there are r objects chosen from n objects, then the number of permutations can be found by the product [n(n-1) (n-r)(n-r+1)] as compared to the standard formula n!/(n-r)!. a. Identify differences between applications of combinations and permutations. b. Using application-based problems, calculate the number of permutations of a set with n elements. Calculate the number of permutations of r elements taken from a set of n elements. c. Using application-based problems, calculate the number of subsets of size r that can be chosen from a set of n elements, explaining this number as the number of combinations "n choose r." d. Using application-based problems, calculate the number of as the number of combinations "n choose r." </i> 	M.712, IS3 Recognize how mathematical arguments and processes can be extrapolated to other areas of study, including theology and philosophy.	

9. Use various counting techniques to determine probabilities of events.	M.712, DS5 Exhibit habits of thinking quantitatively and in an orderly manner, especially through immersion in mathematical observation found within creation.		
10. Use the Pigeonhole Principle to solve counting problems.	M.712, DS6 Propose how mathematical objects or proofs (such as the golden mean, the Fibonacci numbers, the musical scale, and geometric proofs) suggest divine origin.		
Recursion	Recursion		
Recursion is a method of problem solving where a given relation of	r routine operation is repeatedly applied.		
11. Find patterns in application problems involving series and sequences, and develop recursive and explicit formulas as models to understand and describe sequential change. <i>Examples: fractals, population growth.</i>	M.712, DS1 Display a sense of wonder about mathematical relationships, especially mathematical certitude which is independent of human opinion.		
12. Determine characteristics of sequences, including the Fibonacci Sequence, the triangular numbers, and pentagonal numbers. <i>Example: Write a sequence of the first 10 triangular numbers and hypothesize a formula to find the nth triangular number.</i>	M.712, DS6 Propose how mathematical objects or proofs (such as the golden mean, the Fibonacci numbers, the musical scale, and geometric proofs) suggest divine origin.		
13. Use the recursive process and difference equations to create fractals, population growth models, sequences, and series.	M.712, IS2 Demonstrate how sound logical arguments and other processes of		

Applications of Finite Mathematics

	mathematics are foundational to its	
	discipline.	
14. Use mathematical induction to prove statements involving the positive	M.712, DS7	
integers.	Exhibit appreciation for the process	
Examples: Prove that 3 divides $2^{2n} - 1$ for all positive integers n; prove that $1 + 1$	of discovering meanings and truths	
2 + 3 + + n = n(n + 1)/2; prove that a given recursive sequence has a closed	existing with the solution of the	
form expression.	problem and not just arriving at an	
	answer.	
15. Develop and apply connections between Pascal's Triangle and	M.712, DS6	
combinations.	Propose how mathematical objects	
	or proofs (such as the golden mean,	
	the Fibonacci numbers, the musical	
	scale, and geometric proofs) suggest	
	divine origin.	
Networks		
Complex problems can be modeled using vertex and edge graphs and charac	cteristics of the different structures are used to find	
solutions.		
16. Use vertex and edge graphs to model mathematical situations involving	M.712, DS1	
networks.	Display a sense of wonder about	
a. Identify properties of simple graphs, complete graphs, bipartite	mathematical relationships,	
graphs, complete bipartite graphs, and trees.	especially mathematical certitude	
	which is independent of human	
	opinion.	
17. Solve problems involving networks through investigation and application		
of existence and nonexistence of Euler paths, Euler circuits, Hamilton paths,		
and Hamilton circuits. Note: Real world contexts modeled by graphs may		
include roads or communication networks. Example: show why a 5x5 grid has		
no Hamilton circuit.	M.712, DS7	
a. Develop optimal solutions of application-based problems using	Exhibit appreciation for the process	
existing and student created algorithms.	of discovering meanings and truths	

h Give an argument for granh properties	existing with the solution of the	
Example: Explain why a graph bas a Fuler cycle if and only if the graph	problem and not just arriving at an	
is connected and every vertex has even dearee. Show that any tree	answer	
with n vertices has $n - 1$ edges		
18 Apply algorithms relating to minimum weight spapning trees networks		
flows and Stoiner troos. Example: traveling salesman problem		
nows, and steme trees. Example, traveling substituting bioblem		
a. Use shortest path techniques to find optimal shipping routes.		
b. Show that every connected graph has a minimal spanning tree.		
c. Use Kruskal's Algorithm and Prim's Algorithm to determine the		
minimal spanning tree of a weighted graph.		
19. Use vertex-coloring, edge-coloring, and matching techniques to solve		
application-based problems involving conflict.	M.712, DS7	
<i>Examples: Use graph-coloring techniques to color a map of the western states</i>	Exhibit appreciation for the process	
of the United States so that no adjacent states are the same color,	of discovering meanings and truths	
determining the minimum number of colors needed and why no fewer colors	existing with the solution of the	
may be used; use vertex colorings to determine the minimum number of zoo	problem and not just arriving at an	
enclosures needed to house ten animals aiven their cohabitation constraints:	answer.	
use vertex colorinas to develop a time table for scenarios such as schedulina		
club meetings or for housing hazardous chemicals that cannot all be safely		
stored together in warehouses.		
20 Determine the minimum time to complete a project using algorithms to		
20. Determine the minimum time to complete a project using algorithms to		
schedule tasks in order, including critical path analysis, the list-processing		
algorithm, and student-created algorithms.		
21. Use the adjacency matrix of a graph to determine the number of walks of		
length n in a graph.		

Fairness and Democracy		
Various methods for determining a winner in a voting system can result in paradoxes or other issues of fairness.		
22. Analyze advantages and disadvantages of different types of ballot voting		
systems.		
a. Identify impacts of using a preferential ballot voting system and		
compare it to single candidate voting and other voting systems.		
b. Analyze the impact of legal and cultural features of political systems		
on the mathematical aspects of elections.		
Examples: mathematical disadvantages of third parties, the cost of		
run-off elections		
23. Apply a variety of methods for determining a winner using a preferential		
ballot voting system, including plurality, majority, run-off with majority,		
sequential run-off with majority, Borda count, pairwise comparison,		
Condorcet, and approval voting.		
24. Identify issues of fairness for different methods of determining a winner		
using a preferential voting ballot and other voting systems and identify		
paradoxes that can result.		
Example: Arrow's Theorem		
25. Use methods of weighted voting and identify issues of fairness related to		
weighted voting.		
Example: determine the power of voting bodies using the Banzhaf power		
index		
a. Distinguish between weight and power in voting.		
Fair Division		
Methods used to solve non-trivial problems of division of obj	ects often reveal issues of fairness.	
26. Explain and apply mathematical aspects of fair division, with respect to		
classic problems of apportionment, cake cutting, and estate division. Include		
applications in other contexts and modern situations.		

27. Identify and apply historic methods of apportionment for voting districts		
including Hamilton, Jefferson, Adams, Webster, and Huntington-Hill. Identify		
issues of fairness and paradoxes that may result from methods.		
Examples: the Alabama paradox, population paradox.		
28. Use spreadsheets to examine apportionment methods in large problems.		
Example: apportion the 435 seats in the U.S. House of Representatives using		
historically applied methods.		
Information Processing		
Effective systems for sending and receiving information include component	nts that impact accuracy, efficiency, and	security.
29. Critically analyze issues related to information processing including		
accuracy, efficiency, and security.		
30. Apply ciphers (encryption and decryption algorithms) and cryptosystems		
for encrypting and decrypting including symmetric-key or public-key systems.		
a. Use modular arithmetic to apply RSA (Rivest-Shamir-Adleman) public-		
key cryptosystems.		
b. Use matrices and their inverses to encode and decode messages.		
31. Apply error-detecting codes and error-correcting codes to determine		
accuracy of information processing.		
32. Apply methods of data compression. Example: Huffman codes		

Precalculus

Standard	Cardinal Newman	Date
		Completed
Number and Quantity		
The Complex Number System		
Perform arithmetic operations with con	nplex numbers	
1. Define the constant <i>e</i> in a variety of contexts.	IS6 Evaluate the ongoing nature of	
Example: the total interest earned if a 100% annual rate is continuously	mathematical inquiry, its	
compounded.	inexhaustibility, and its openness to	
a. Explore the behavior of the function <i>y=e^x</i> and its applications.	the infinite.	
b. Explore the behavior of <i>ln(x)</i> , the logarithmic function with base <i>e</i> , and		
its applications		
2. Find the conjugate of a complex number; use conjugates to find moduli and		
quotients of complex numbers.		
Represent complex numbers and their operations on the complex plane.		
3. Represent complex numbers on the complex plane in rectangular and polar	DS1 Display a sense of wonder about	
form (including real and imaginary numbers), and explain why the rectangular	mathematical relationships,	
and polar forms of a given complex number represent the same number.	especially mathematical certitude	
	which is independent of human	
	opinion.	
4. Represent addition, subtraction, multiplication, and conjugation of	DS9 Advance an understanding of	
complex numbers geometrically on the complex plane; use properties of this	the ability of the human intellect to	
representation for computation.	know and the desire of the will to	
Example: $(-1 + \sqrt{3}i)^3 = 8$ because $(-1 + \sqrt{3}i)$ has modulus 2 and argument 120°.	want to know more.	

5. Calculate the distance between numbers in the complex plane as the		
modulus of the difference, and the midpoint of a segment as the average of		
the numbers at its endpoints.		
Use complex numbers in polynomial identit	ies and equations.	
6. Analyze possible zeros for a polynomial function over the complex numbers	GS2 Develop lines of inquiry to	
by applying the Fundamental Theorem of Algebra, using a graph of the	understand why things are true and	
function, or factoring with algebraic identities.	why they are false.	
Limits		
Understand limits of functio	ns.	
7. Determine numerically, algebraically, and graphically the limits of functions	GS3 Have faith in the glory and	
at specific values and at infinity.	dignity of human reason as both a	
a. Apply limits of functions at specific values and at infinity in problems	gift from God and a reflection of Him	
involving convergence and divergence.	in whose image and likeness we are	
	made.	
Vector and Matrix Quantiti	es	
Represent and model with vector of	juantities.	
8. Explain that vector quantities have both magnitude and direction.	DS6 Propose how mathematical	
Represent vector quantities by directed line segments, and use appropriate	objects or proofs (such as the golden	
symbols for vectors and their magnitudes.	mean, the Fibonacci numbers, the	
Examples: v, v , v , v	musical scale, and geometric proofs)	
	suggest divine origin.	
9. Find the components of a vector by subtracting the coordinates of an initial		
point from the coordinates of a terminal point.		
10. Solve problems involving velocity and other quantities that can be	DS5 Exhibit habits of thinking	
represented by vectors.	quantitatively and in an orderly	
	manner, especially through	
	immersion in mathematical	
	observations found within creation.	

11. Find the scalar (dot) product of two vectors as the sum of the products of		
corresponding components and explain its relationship to the cosine of the		
angle formed by two vectors.		
Perform operations on vector	ors.	
12. Add and subtract vectors.		
a. Add vectors end-to-end, component-wise, and by the parallelogram		
rule, understanding that the magnitude of a sum of two vectors is not		
always the sum of the magnitudes.		
b. Given two vectors in magnitude and direction form, determine the		
magnitude and direction of their sum.		
c. Explain vector subtraction, $v - w$, as $v + (-w)$, where $-w$ is the additive		
inverse of w , with the same magnitude as w and pointing in the	GS1 Demonstrate the mental habits	
opposite direction. Represent vector subtraction graphically by	of precise, determined, careful, and	
connecting the tips in the appropriate order, and perform vector	accurate questioning, inquiry, and	
subtraction component-wise	reasoning in the pursuit of	
13. Multiply a vector by a scalar.	transcendent truths.	
a. Represent scalar multiplication graphically by scaling vectors and		
possibly reversing their direction; perform scalar multiplication		
component-wise.		
Example: $c(v_x, v_y) = (cv_x, cv_y)$		
b. Compute the magnitude of a scalar multiple $c\mathbf{v}$ using $ c\mathbf{v} = c \mathbf{v}$.		
Compute the direction of $c\mathbf{v}$ knowing that when $ c \mathbf{v} \neq 0$, the direction		
of $c\mathbf{v}$ is either along \mathbf{v} (for $c > 0$) or against \mathbf{v} (for $c < 0$).		
14. Multiply a vector (regarded as a matrix with one column) by a matrix of		
suitable dimensions to produce another vector. Work with matrices as		
transformations of vectors.		

Algebra		
Seeing Structure in Expressions		
Write expressions in equivalent forms to solve problems.		
15. Derive the formula for the sum of a finite geometric series (when the	IS3 Recognize how mathematical	
common ratio is not 1), and use the formula to solve problems, extending to	arguments and processes can be	
infinite geometric series.	extrapolated to other areas of study,	
Examples: calculate mortgage payments; determine the long-term level of	including theology and philosophy.	
medication if a patient takes 50 mg of a medication every 4 hours, while 70%		
of the medication is filtered out of the patient's blood.		
Understand the relationship between zeros and	factors of polynomials.	
16. Derive and apply the Remainder Theorem: For a polynomial $p(x)$ and a	IS1 Explain the nature of rational	
number a, the remainder on division by $x - a$ is $p(a)$, so $p(a) = 0$ if and only if	discourse and argument and the	
(x - a) is a factor of $p(x)$.	desirability of precision and	
	deductive certainty which	
	mathematics makes possible and is	
	not possible to the same degree in	
	other disciplines.	
Use polynomial identities to solve polynomi	problems.	
17. Know and apply the Binomial Theorem for the expansion of $(x + y)^n$ in		
powers of x and y for a positive integer, n, where x and y are any numbers.		
18. Rewrite simple rational expressions in different forms; write $a(x)/b(x)$ in		
the form $q(x) + r(x)/b(x)$, where $a(x)$, $b(x)$, $q(x)$, and $r(x)$ are polynomials with		
the degree of $r(x)$ less than the degree of $b(x)$, using inspection, long division,	IS2 Demonstrate how sound logical	
or, for the more complicated cases, a computer algebra system.	arguments and other processes of	
19. Add, subtract, multiply, and divide rational expressions.	mathematics are foundational to its	
a. Explain why rational expressions form a system analogous to the	discipline.	
rational numbers, which is closed under addition, subtraction,		
multiplication, and division by a non-zero rational expression.		

Reasoning With Equations and Inequalities		
Understand solving equations as a process of reasonir	ng and explain the reasoning.	
20. Explain each step in solving an equation as following from the equality of	IS1 Explain the nature of rational	
numbers asserted at the previous step, starting from the assumption that the	discourse and argument and the	
original equation has a clear-cut solution. Construct a viable argument to	desirability of precision and	
justify a solution method. Include equations that may involve linear,	deductive certainty which	
quadratic, polynomial, exponential, logarithmic, absolute value, radical,	mathematics makes possible and is	
rational, piecewise, and trigonometric functions, and their inverses.	not possible to the same degree in	
	other disciplines.	
21. Solve simple rational equations in one variable, and give examples	DS7 Exhibit appreciation for the	
showing how extraneous solutions may arise.	process of discovering meanings and	
	truths existing within the solution of	
	the problem and not just arriving at	
	an answer.	
Solve systems of equations.		
22. Represent a system of linear equations as a single matrix equation in a	DS2 Share with others the beauty,	
vector variable.	harmony, proportion, radiance, and	
23. Find the inverse of a matrix if it exists and use it to solve systems of linear	wholeness present in mathematics.	
equations (using technology for matrices of dimension 3 x 3 or greater).		
Functions		
Interpreting Functions		
Interpret functions that arise in applications in	terms of the context.	
24. Compare and contrast families of functions and their representations	GS1 Demonstrate the mental habits	
algebraically, graphically, numerically, and verbally in terms of their key	of precise, determined, careful, and	
features. Note: Key features include intercepts; intervals where the function is	accurate questioning, inquiry, and	
increasing, decreasing, positive, or negative; maximums and minimums;	reasoning in the pursuit of	
symmetries (including even and odd); end behavior; asymptotes; and	transcendent truths.	
periodicity. Families of functions include but are not limited to linear,		
quadratic, polynomial, exponential, logarithmic, absolute value, radical,		
rational, piecewise, trigonometric, and their inverses.		

25. Calculate and interpret the average rate of change of a function	IS2 Demonstrate how sound logical	
(presented symbolically or as a table) over a specified interval. Estimate the	arguments and other processes of	
rate of change from a graph. Extend from polynomial, exponential,	mathematics are foundational to its	
logarithmic, and radical to rational and all trigonometric functions.	discipline.	
a. Find the difference quotient $\frac{f(x+\Delta x) - f(x)}{\Delta x}$ of a function and use it to		
evaluate the average rate of change at a point.		
b. Explore how the average rate of change of a function over an interval		
(presented symbolically or as a table) can be used to approximate the		
instantaneous rate of change at a point as the interval decreases.		
Analyze functions using different repr	esentations.	
26. Graph functions expressed symbolically and show key features of the		
graph, by hand and using technology. Use the equation of functions to		
identify key features in order to generate a graph.		
a. Graph rational functions, identifying zeros and asymptotes when		
suitable factorizations are available, and showing end behavior.		
b. Graph trigonometric functions and their inverses, showing period,		
midline, amplitude, and phase shift.		
Building Functions		
Build a function that models a relationship bet	ween two quantities.	
27. Compose functions. Extend to polynomial, trigonometric, radical, and	IS5 Recognize personal bias in inquiry	
rational functions. Example: If T(y) is the temperature in the atmosphere as a	and articulate why inquiry should be	
function of height, and h(t) is the height of a weather balloon as a function of	undertaken in a fair and independent	
time, then T(h(t)) is the temperature at the location of the weather balloon as	manner.	
a function of time.		
Build new functions from existing functions.		
28. Find inverse functions.	IS7 Explain man's limitations of	
a. Given that a function has an inverse, write an expression for the	understanding and uncovering all	
inverse of the function.	mathematical knowledge.	
Example: Given $f(x) = 2x^3$ or $f(x) = (x + 1)/(x - 1)$ for $x \neq 1$ find $f^{-1}(x)$.		
b. Verify by composition that one function is the inverse of another.		

c. Read values of an inverse function from a graph or a table, given that		
d Produce an invertible function from a non-invertible function by		
u. Produce an invertible function from a non-invertible function by		
29. Use the inverse relationship between exponents and logarithms to solve	DS3 Advocate for the pursuit of	
problems involving logarithms and exponents. Extend from logarithms with	understanding for its own sake and	
base 2 and 10 to a base of e.	the intrinsic value or discovery of the	
	true and the beautiful often at the	
	dissipling and effort	
20. Identify the effect on the graph of replacing $f(x)$ by $f(x) + \frac{1}{2} \frac$	DS4 Subjit appreciation for the	
30. Identify the effect on the graph of replacing $f(x)$ by $f(x) + k$, $k \cdot f(x)$, $f(k \cdot x)$ and $f(x + k)$ for specific values of k (both positive and positive), find the	DS4 Exhibit appreciation for the	
x_{j} , and $j(x + k)$ for specific values of k (both positive and negative), find the value of k given the graphs. Extend the analysis to include all trigonometric		
rational and general niecewise-defined functions with and without		
technology		
Example: Describe the sequence of transformations that will relate v=sin(x)		
and $v=2\sin(3x)$.		
31. Graph conic sections from second-degree equations, extending from	IS4 Explain how it is possible to	
circles and parabolas to ellipses and hyperbolas, using technology to discover	mentally abstract and construct	
patterns.	mathematical objects from direct	
a. Graph conic sections given their standard form.	observations of reality and how	
Example: The graph of $\frac{x^2}{9} + \frac{(y-3)^2}{4} = 1$ will be an ellipse centered at	one's perception of that reality is important to what one is doing	
(0,3) with major axis 3 and minor axis 2, while the graph of $\frac{x^2}{9}$ –		
$\frac{(y-3)^2}{4} = 1$ will be a hyperbola centered at (0,3) with asymptotes with		
slope ±3/2.		
 b. Identify the conic section that will be formed, given its equation in general form. 		
Example: $5y^2 - 25x^2 = -25$ will be a hyperbola		

Trigonometric Functions		
Recognize attributes of trigonometric functions and solve problems involving trigonometry		
32. Solve application-based problems involving parametric and polar	IS8 Explain how fundamental	
equations.	questions of values, common sense,	
a. Graph parametric and polar equations.	and religious and human truths and	
b. Convert parametric and polar equations to rectangular form	experiences are beyond the scope of	
	mathematical inquiry and its	
	syllogisms.	
Extend the domain of trigonometric functions	using the unit circle	
33. Use special triangles to determine geometrically the values of sine,		
cosine, and tangent for $\pi/3$, $\pi/4$, and $\pi/6$, and use the unit circle to express		
the values of sine, cosine, and tangent for $\pi - x$, $\pi + x$, and $2\pi - x$ in terms of		
their values for x, where x is any real number.		
34. Use the unit circle to explain symmetry (odd and even) and periodicity of	GS4 Explain how mathematics in its	
trigonometric functions.	reflection of the good, true, and	
	beautiful reveals qualities of being	
	and the presence of God.	
Model periodic phenomena with trigonometric functions.		
35. Demonstrate that restricting a trigonometric function to a domain on		
which it is always increasing or always decreasing allows its inverse to be		
constructed.		
36. Use inverse functions to solve trigonometric equations that arise in	DS8 Exhibit humility at knowing that	
modeling contexts; evaluate the solutions using technology, and interpret	as a human being man can only grasp	
them in terms of the context.	a portion of the truths of the	
	universe.	

Prove and apply trigonometric identities.		
37. Use trigonometric identities to solve problems.	DS6 Propose how mathematical	
a. Use the Pythagorean identity $sin^2(\vartheta) + cos^2(\vartheta) = 1$ to derive the other	objects or proofs (such as the golden	
forms of the identity.	mean, the Fibonacci numbers, the	
Example: $1 + cot^2 (\vartheta) = csc^2 (\vartheta)$	musical scale, and geometric proofs)	
b. Use the angle sum formulas for sine, cosine, and tangent to derive the	suggest divine origin.	
double angle formulas.		
c. Use the Pythagorean and double angle identities to prove other		
simple identities.		